Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7232027779114464055558312 ~2016
7232201617114464403234312 ~2016
7232309612314464619224712 ~2016
7232370734314464741468712 ~2016
7232424841114464849682312 ~2016
7232482626143394895756712 ~2017
7232675371343396052227912 ~2017
7232883216143397299296712 ~2017
7232892575914465785151912 ~2016
7233199808314466399616712 ~2016
7233695360314467390720712 ~2016
7233732283114467464566312 ~2016
7233825607114467651214312 ~2016
7233860995114467721990312 ~2016
7233963013114467926026312 ~2016
7234281355114468562710312 ~2016
7234691927914469383855912 ~2016
7234712342314469424684712 ~2016
7235571589114471143178312 ~2016
7235691247114471382494312 ~2016
7236178171114472356342312 ~2016
7236393157114472786314312 ~2016
7236400561114472801122312 ~2016
7236452683114472905366312 ~2016
7236703103914473406207912 ~2016
Exponent Prime Factor Dig. Year
7236819062314473638124712 ~2016
7237097575114474195150312 ~2016
7237244060314474488120712 ~2016
7237326581914474653163912 ~2016
7237931461157903451688912 ~2017
7238097860957904782887312 ~2017
7238307587914476615175912 ~2016
7238912059114477824118312 ~2016
7239210884314478421768712 ~2016
7239458257343436749543912 ~2017
7239501578314479003156712 ~2016
7239609456772396094567112 ~2018
7240181699914480363399912 ~2016
7240398016757923184133712 ~2017
7240569331743443415990312 ~2017
7240706090314481412180712 ~2016
7241729393914483458787912 ~2016
7242035888314484071776712 ~2016
7243299517114486599034312 ~2016
7243325915914486651831912 ~2016
7243615205914487230411912 ~2016
7243931840314487863680712 ~2016
7244024657914488049315912 ~2016
7244241842314488483684712 ~2016
7244603465914489206931912 ~2016
Exponent Prime Factor Dig. Year
7244614724314489229448712 ~2016
7244689343343468136059912 ~2017
7245760595914491521191912 ~2016
7246330921114492661842312 ~2016
7247597755114495195510312 ~2016
7247864455157982915640912 ~2017
7248266427743489598566312 ~2017
7249931479114499862958312 ~2016
7250001445114500002890312 ~2016
7250233807114500467614312 ~2016
7250347397914500694795912 ~2016
7251034997914502069995912 ~2016
725135018391683...27015915 2025
7251385769343508314615912 ~2017
7251823717343510942303912 ~2017
7252324104772523241047112 ~2018
7252565584158020524672912 ~2017
7252850307743517101846312 ~2017
7253262347958026098783312 ~2017
7253472745114506945490312 ~2016
7253482358314506964716712 ~2016
7253677409914507354819912 ~2016
7255305863914510611727912 ~2016
7255309303114510618606312 ~2016
7255350127114510700254312 ~2016
Exponent Prime Factor Dig. Year
7255429572143532577432712 ~2017
7255816831114511633662312 ~2016
7255873424314511746848712 ~2016
7256087030314512174060712 ~2016
7256401741114512803482312 ~2016
7256586649758052693197712 ~2017
7256669035114513338070312 ~2016
7256755868314513511736712 ~2016
725706309597097...07790314 2025
7257234625114514469250312 ~2016
7257695324314515390648712 ~2016
7257774794314515549588712 ~2016
7257786161958062289295312 ~2017
7258024543343548147259912 ~2017
7258346039914516692079912 ~2016
7258481383114516962766312 ~2016
7258700222314517400444712 ~2016
7259400746958075205975312 ~2017
7259675953758077407629712 ~2017
7259828053743558968322312 ~2017
7260436217914520872435912 ~2016
726048246731553...48002314 2023
7260542916143563257496712 ~2017
7260894305914521788611912 ~2016
7261011299914522022599912 ~2016
Home
5.037.460 digits
e-mail
25-09-07