Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12421584617924843169235912 ~2018
12422562092324845124184712 ~2018
12423887189374543323135912 ~2019
12424890062324849780124712 ~2018
12425802505124851605010312 ~2018
12425983513124851967026312 ~2018
12426346508324852693016712 ~2018
12428013017924856026035912 ~2018
12429543181124859086362312 ~2018
12430378087124860756174312 ~2018
12432070256324864140512712 ~2018
12435267271124870534542312 ~2018
12435464537924870929075912 ~2018
12435541802324871083604712 ~2018
12435889285124871778570312 ~2018
12437075489924874150979912 ~2018
12439578761924879157523912 ~2018
12441480437924882960875912 ~2018
12442319186324884638372712 ~2018
12442357603774654145622312 ~2019
12443498989124886997978312 ~2018
12444434413124888868826312 ~2018
12445240832324890481664712 ~2018
12445373275124890746550312 ~2018
12447038629124894077258312 ~2018
Exponent Prime Factor Dig. Year
12449834267924899668535912 ~2018
12450902804324901805608712 ~2018
12451089008324902178016712 ~2018
12453193109924906386219912 ~2018
12456011515374736069091912 ~2019
12456167201924912334403912 ~2018
12457717651124915435302312 ~2018
12458367638324916735276712 ~2018
12458716019924917432039912 ~2018
12458783455124917566910312 ~2018
12459143405924918286811912 ~2018
12459409991924918819983912 ~2018
12459418783124918837566312 ~2018
12459458933374756753599912 ~2019
12460871171924921742343912 ~2018
12461725393374770352359912 ~2019
12463197163124926394326312 ~2018
12463279333124926558666312 ~2018
12465043994324930087988712 ~2018
12465661951124931323902312 ~2018
12467396672324934793344712 ~2018
12469260649124938521298312 ~2018
12471674569124943349138312 ~2018
12471787793924943575587912 ~2018
12472121135374832726811912 ~2019
Exponent Prime Factor Dig. Year
12473040416324946080832712 ~2018
12473454626324946909252712 ~2018
12475488515924950977031912 ~2018
12477405058174864430348712 ~2019
12477802262324955604524712 ~2018
12477824539124955649078312 ~2018
12479225069924958450139912 ~2018
12482730398324965460796712 ~2018
12483765805124967531610312 ~2018
12484629919124969259838312 ~2018
12485562293924971124587912 ~2018
12485711435924971422871912 ~2018
12485817889124971635778312 ~2018
12486471187124972942374312 ~2018
12486994933124973989866312 ~2018
12487240351124974480702312 ~2018
12487374218324974748436712 ~2018
12487874432324975748864712 ~2018
12489210854324978421708712 ~2018
1248935694076819...89622314 2025
12490720313924981440627912 ~2018
1249202382491146...71258315 2025
12492172601924984345203912 ~2018
12492303491924984606983912 ~2018
12492448499924984896999912 ~2018
Exponent Prime Factor Dig. Year
12493047611924986095223912 ~2018
12493538261924987076523912 ~2018
12494788532324989577064712 ~2018
12497315257124994630514312 ~2018
12497690501924995381003912 ~2018
12499590489774997542938312 ~2019
1250042073015075...16420714 2023
12501161309925002322619912 ~2018
12502196345925004392691912 ~2018
12502587055125005174110312 ~2018
12502931197125005862394312 ~2018
12503008652325006017304712 ~2018
12503352381775020114290312 ~2019
12503964395925007928791912 ~2018
12504455678325008911356712 ~2018
12505986451125011972902312 ~2018
12506685536325013371072712 ~2018
12506776489125013552978312 ~2018
12507203243925014406487912 ~2018
12507262633125014525266312 ~2018
12508216715925016433431912 ~2018
12508707233925017414467912 ~2018
1250897674691100...37272115 2024
12510267823125020535646312 ~2018
12510351488325020702976712 ~2018
Home
4.888.230 digits
e-mail
25-06-29