Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10881478181921762956363912 ~2017
10881542723921763085447912 ~2017
10882269217121764538434312 ~2017
10882636067921765272135912 ~2017
1088433267772176...35540114 2024
10884677545121769355090312 ~2017
10884710803121769421606312 ~2017
10886263568321772527136712 ~2017
10886443865921772887731912 ~2017
10886828659121773657318312 ~2017
10887212701765323276210312 ~2018
10887452003921774904007912 ~2017
10888231081121776462162312 ~2017
10888974425921777948851912 ~2017
10889022167921778044335912 ~2017
10889124937365334749623912 ~2018
10889678123921779356247912 ~2017
10889790353921779580707912 ~2017
1089128519213920...69156114 2023
10891460261921782920523912 ~2017
10891851125921783702251912 ~2017
10893051500321786103000712 ~2017
10893097874321786195748712 ~2017
10893452378321786904756712 ~2017
10893501487121787002974312 ~2017
Exponent Prime Factor Dig. Year
10893844200165363065200712 ~2018
10894280981921788561963912 ~2017
10894416656321788833312712 ~2017
10894633636165367801816712 ~2018
10894665464321789330928712 ~2017
10894711040321789422080712 ~2017
10895685257921791370515912 ~2017
10895946283121791892566312 ~2017
10897894763921795789527912 ~2017
10897925353365387552119912 ~2018
10898584658321797169316712 ~2017
10899029615365394177691912 ~2018
10899229874321798459748712 ~2017
10899467143121798934286312 ~2017
10900920359921801840719912 ~2017
10901546492321803092984712 ~2017
10901696366321803392732712 ~2017
10902481790321804963580712 ~2017
10902847721921805695443912 ~2017
10902932185121805864370312 ~2017
10903159169921806318339912 ~2017
10904046476321808092952712 ~2017
10904207204321808414408712 ~2017
1090441213212529...14647314 2024
10904435417921808870835912 ~2017
Exponent Prime Factor Dig. Year
10904780570321809561140712 ~2017
10905151633121810303266312 ~2017
10905734023365434404139912 ~2018
10905785132321811570264712 ~2017
10906083271121812166542312 ~2017
10906636649921813273299912 ~2017
10908440081921816880163912 ~2017
10908943272165453659632712 ~2018
10909377557921818755115912 ~2017
10911973093121823946186312 ~2017
10912719215921825438431912 ~2017
10913102246321826204492712 ~2017
10913179301921826358603912 ~2017
10913913368321827826736712 ~2017
10914378420165486270520712 ~2018
10915012919921830025839912 ~2017
10915686140321831372280712 ~2017
10916774077121833548154312 ~2017
10917514682321835029364712 ~2017
10917676015121835352030312 ~2017
10917723181121835446362312 ~2017
10917797203121835594406312 ~2017
10918885453121837770906312 ~2017
10920673363121841346726312 ~2017
10921209323921842418647912 ~2017
Exponent Prime Factor Dig. Year
10921715744321843431488712 ~2017
10921994866165531969196712 ~2018
10922592619121845185238312 ~2017
10922756273921845512547912 ~2017
10922884592321845769184712 ~2017
10922983149765537898898312 ~2018
10923614311121847228622312 ~2017
10923663692321847327384712 ~2017
10923746407121847492814312 ~2017
10924067759921848135519912 ~2017
10924389437921848778875912 ~2017
1092487502173911...57768714 2023
10925713964321851427928712 ~2017
10925977081121851954162312 ~2017
10926191557121852383114312 ~2017
10926652437765559914626312 ~2018
10927623794321855247588712 ~2017
10927933529921855867059912 ~2017
1092883058175088...88395315 2025
10929357497921858714995912 ~2017
10929627401921859254803912 ~2017
10930201456165581208736712 ~2018
10930422662321860845324712 ~2017
10930681550321861363100712 ~2017
10930729867121861459734312 ~2017
Home
4.888.230 digits
e-mail
25-06-29