Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9418659265775349274125712 ~2018
9418695121356512170727912 ~2018
9419318030318838636060712 ~2017
9419463487118838926974312 ~2017
9419693417975357547343312 ~2018
9420096013118840192026312 ~2017
9420915200318841830400712 ~2017
9420967364318841934728712 ~2017
9421048249118842096498312 ~2017
9421862429918843724859912 ~2017
9423405710975387245687312 ~2018
9423617330318847234660712 ~2017
9424039843118848079686312 ~2017
9424223786318848447572712 ~2017
9424730603918849461207912 ~2017
9424864618175398916944912 ~2018
9425069342318850138684712 ~2017
9425547959918851095919912 ~2017
9425626217918851252435912 ~2017
9426901622318853803244712 ~2017
9427635674318855271348712 ~2017
9428224177118856448354312 ~2017
9428621813918857243627912 ~2017
9428696153918857392307912 ~2017
9429517253918859034507912 ~2017
Exponent Prime Factor Dig. Year
9429573209918859146419912 ~2017
9429780571118859561142312 ~2017
9430109071775440872573712 ~2018
9430155464318860310928712 ~2017
9431204815118862409630312 ~2017
9431582066318863164132712 ~2017
9431583427118863166854312 ~2017
9431828960318863657920712 ~2017
9432068623175456548984912 ~2018
9432260417918864520835912 ~2017
9432330716318864661432712 ~2017
9432693002318865386004712 ~2017
9432716161118865432322312 ~2017
9433283483918866566967912 ~2017
9433924121918867848243912 ~2017
9434049542318868099084712 ~2017
9434462549918868925099912 ~2017
9434754313118869508626312 ~2017
9435531571118871063142312 ~2017
9436089349175488714792912 ~2018
9436242482318872484964712 ~2017
9436608769118873217538312 ~2017
9436916444318873832888712 ~2017
9437683454318875366908712 ~2017
9437964917918875929835912 ~2017
Exponent Prime Factor Dig. Year
9438356972318876713944712 ~2017
9438404510318876809020712 ~2017
9440180893756641085362312 ~2018
9440399191118880798382312 ~2017
944063882276740...19407914 2025
9441475166318882950332712 ~2017
9441586424318883172848712 ~2017
9441698225918883396451912 ~2017
9441907879118883815758312 ~2017
9443132027918886264055912 ~2017
9443189273918886378547912 ~2017
9443468983118886937966312 ~2017
9444206617118888413234312 ~2017
9444433921118888867842312 ~2017
9444536203118889072406312 ~2017
9445134943118890269886312 ~2017
9445326659918890653319912 ~2017
944561424711379...80076714 2024
9446205413918892410827912 ~2017
9446258293756677549762312 ~2018
9446336653775570693229712 ~2018
9446604326318893208652712 ~2017
9447653618318895307236712 ~2017
9447943999118895887998312 ~2017
9447981320318895962640712 ~2017
Exponent Prime Factor Dig. Year
9447997952318895995904712 ~2017
9448620662318897241324712 ~2017
9448804757918897609515912 ~2017
9449242319918898484639912 ~2017
9449446340318898892680712 ~2017
9450062892156700377352712 ~2018
9450390005918900780011912 ~2017
9450624772175604998176912 ~2018
9450998966318901997932712 ~2017
9451012736318902025472712 ~2017
9451098158318902196316712 ~2017
9451111484318902222968712 ~2017
9451219109918902438219912 ~2017
9451716103118903432206312 ~2017
9452154665918904309331912 ~2017
9452227298318904454596712 ~2017
9452728069756716368418312 ~2018
9452737421918905474843912 ~2017
9453111925118906223850312 ~2017
9454157521118908315042312 ~2017
9454328513918908657027912 ~2017
9454362203918908724407912 ~2017
9454424471918908848943912 ~2017
9454807680156728846080712 ~2018
9455736331118911472662312 ~2017
Home
4.888.230 digits
e-mail
25-06-29