Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9606993602319213987204712 ~2017
9607068536319214137072712 ~2017
9607100279919214200559912 ~2017
9607619284776860954277712 ~2018
9607666523357645999139912 ~2018
9607909229919215818459912 ~2017
9608214419919216428839912 ~2017
9608222717919216445435912 ~2017
9608395231119216790462312 ~2017
9608478386319216956772712 ~2017
9608940254319217880508712 ~2017
9609504291757657025750312 ~2018
9609511909119219023818312 ~2017
9609639692319219279384712 ~2017
9609884000319219768000712 ~2017
9610168520976881348167312 ~2018
9610176752319220353504712 ~2017
9610242010176881936080912 ~2018
9612162703176897301624912 ~2018
9612356099919224712199912 ~2017
9612717647919225435295912 ~2017
961426357812365...40212714 2024
9614496204157686977224712 ~2018
9614633981919229267963912 ~2017
9614835248319229670496712 ~2017
Exponent Prime Factor Dig. Year
9614856602319229713204712 ~2017
9615500965119231001930312 ~2017
9615812053757694872322312 ~2018
9616730593119233461186312 ~2017
9616910243919233820487912 ~2017
9617714803119235429606312 ~2017
9617878418319235756836712 ~2017
9617929229919235858459912 ~2017
9618500717357711004303912 ~2018
9619442890776955543125712 ~2018
9619520891919239041783912 ~2017
9619692073119239384146312 ~2017
9620287757919240575515912 ~2017
9622734196157736405176712 ~2018
9622934623119245869246312 ~2017
9623750617119247501234312 ~2017
9623909947757743459686312 ~2018
9623912269119247824538312 ~2017
9623996632157743979792712 ~2018
9624009014319248018028712 ~2017
9625188703777001509629712 ~2018
9625751035119251502070312 ~2017
9627513374319255026748712 ~2017
9627765665919255531331912 ~2017
9628645597757771873586312 ~2018
Exponent Prime Factor Dig. Year
9629046391119258092782312 ~2017
9629654000319259308000712 ~2017
9630055016319260110032712 ~2017
9630115681119260231362312 ~2017
9630741322777045930581712 ~2018
9630881424157785288544712 ~2018
9631018982319262037964712 ~2017
9631250263119262500526312 ~2017
9631365650319262731300712 ~2017
9631615537119263231074312 ~2017
9632218661357793311967912 ~2018
9632271245919264542491912 ~2017
9632398436319264796872712 ~2017
9633622622319267245244712 ~2017
9634128312157804769872712 ~2018
9634380491919268760983912 ~2017
9635269652319270539304712 ~2017
9636988784319273977568712 ~2017
9637144807177097158456912 ~2018
9637197547119274395094312 ~2017
9638322106177106576848912 ~2018
9638620526319277241052712 ~2017
963943208572833...33195914 2024
9639536693977116293551312 ~2018
9640132034319280264068712 ~2017
Exponent Prime Factor Dig. Year
9642386567357854319403912 ~2018
9643879919919287759839912 ~2017
9644078495919288156991912 ~2017
9644341400319288682800712 ~2017
9644534609919289069219912 ~2017
9646606235919293212471912 ~2017
9646961591919293923183912 ~2017
9647771281757886627690312 ~2018
9648217087119296434174312 ~2017
9648350071757890100430312 ~2018
9648614390977188915127312 ~2018
9648716055757892296334312 ~2018
9649033246157894199476712 ~2018
9649235351919298470703912 ~2017
9649417519119298835038312 ~2017
9649564153119299128306312 ~2017
9650438890777203511125712 ~2018
9651718517357910311103912 ~2018
9651754699119303509398312 ~2017
9652148875119304297750312 ~2017
9654395155119308790310312 ~2017
9655464569919310929139912 ~2017
9655943891919311887783912 ~2017
9656276162319312552324712 ~2017
9656508623919313017247912 ~2017
Home
4.873.271 digits
e-mail
25-06-22