Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17791682035135583364070312 ~2019
1779404695438274...37495115 2023
17794360781935588721563912 ~2019
17795177852335590355704712 ~2019
17795535175135591070350312 ~2019
17796519344335593038688712 ~2019
17798460811135596921622312 ~2019
17798974007935597948015912 ~2019
17799156899935598313799912 ~2019
1779928332893524...99122314 2023
17800886753935601773507912 ~2019
17801399534335602799068712 ~2019
17802596507935605193015912 ~2019
17803115198335606230396712 ~2019
17803681766335607363532712 ~2019
17804535023935609070047912 ~2019
17805456866335610913732712 ~2019
17806657838335613315676712 ~2019
1780708071412706...68543314 2024
17807340986335614681972712 ~2019
17809427479135618854958312 ~2019
17810960378335621920756712 ~2019
17812221908335624443816712 ~2019
17812262603935624525207912 ~2019
17813249480335626498960712 ~2019
Exponent Prime Factor Dig. Year
17815407371935630814743912 ~2019
17816041388335632082776712 ~2019
17816080561135632161122312 ~2019
17816148071935632296143912 ~2019
17818340984335636681968712 ~2019
17819024765935638049531912 ~2019
17819858623135639717246312 ~2019
17820315752335640631504712 ~2019
17822694653935645389307912 ~2019
17824666574335649333148712 ~2019
17825134604335650269208712 ~2019
17825706167935651412335912 ~2019
17831275231135662550462312 ~2019
17831436337135662872674312 ~2019
17833096723135666193446312 ~2019
17834306845135668613690312 ~2019
17834527633135669055266312 ~2019
17834904893935669809787912 ~2019
17836500797935673001595912 ~2019
17837573738335675147476712 ~2019
17838881179135677762358312 ~2019
17839061549935678123099912 ~2019
17840682467935681364935912 ~2019
17844680713135689361426312 ~2019
17844781349935689562699912 ~2019
Exponent Prime Factor Dig. Year
17845953938335691907876712 ~2019
17846283905935692567811912 ~2019
17847231311935694462623912 ~2019
17849060605135698121210312 ~2019
17850087037135700174074312 ~2019
17850120956335700241912712 ~2019
17851032121135702064242312 ~2019
17853001982335706003964712 ~2019
17853013685935706027371912 ~2019
17854863500335709727000712 ~2019
17855103821935710207643912 ~2019
17855643917935711287835912 ~2019
17856951251935713902503912 ~2019
17860540723135721081446312 ~2019
1786086926238144...83608914 2023
17863964183935727928367912 ~2019
17864009423935728018847912 ~2019
17865232820335730465640712 ~2019
17866217870335732435740712 ~2019
17869477451935738954903912 ~2019
17870522792335741045584712 ~2019
17871232160335742464320712 ~2019
17872284194335744568388712 ~2019
17872598203135745196406312 ~2019
17872773253135745546506312 ~2019
Exponent Prime Factor Dig. Year
17873373965935746747931912 ~2019
17874055501135748111002312 ~2019
17874857251135749714502312 ~2019
17878731047935757462095912 ~2019
17882771431135765542862312 ~2019
1788296653211112...82966315 2025
17883247439935766494879912 ~2019
17885162681935770325363912 ~2019
17886511730335773023460712 ~2019
17886874123135773748246312 ~2019
17887016551135774033102312 ~2019
17887282409935774564819912 ~2019
17887535261935775070523912 ~2019
17888089441135776178882312 ~2019
17889236438335778472876712 ~2019
17890305518335780611036712 ~2019
17890787909935781575819912 ~2019
1789134961916058...10272715 2023
17892288659935784577319912 ~2019
17894531323135789062646312 ~2019
17894773874335789547748712 ~2019
1789731532511364...69212716 2025
17898309877135796619754312 ~2019
17899586131135799172262312 ~2019
17902351274335804702548712 ~2019
Home
4.724.182 digits
e-mail
25-04-13