Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
3084647289749354356635312 ~2015
3084676447718508058686312 ~2014
3084800522943187207320712 ~2015
308534628596170692571911 ~2013
3085447035718512682214312 ~2014
308552406596171048131911 ~2013
308554337516171086750311 ~2013
308581222316171624446311 ~2013
308590574036171811480711 ~2013
308607522116172150442311 ~2013
3086142988124689143904912 ~2014
308624128916172482578311 ~2013
308643405836172868116711 ~2013
308661189716173223794311 ~2013
308661716396173234327911 ~2013
308674757636173495152711 ~2013
308675964236173519284711 ~2013
308676723836173534476711 ~2013
308677576196173551523911 ~2013
3087134884330871348843112 ~2015
308713866716174277334311 ~2013
308718125396174362507911 ~2013
308726437796174528755911 ~2013
308732270396174645407911 ~2013
3087404573318524427439912 ~2014
Exponent Prime Factor Dig. Year
308748136316174962726311 ~2013
308794048196175880963911 ~2013
308810191316176203826311 ~2013
308813949596176278991911 ~2013
308822427116176448542311 ~2013
3088239712724705917701712 ~2014
308829110996176582219911 ~2013
308853368516177067370311 ~2013
3088653199974127676797712 ~2016
308868601316177372026311 ~2013
308872866236177457324711 ~2013
3088802342924710418743312 ~2014
3088972515130889725151112 ~2015
308903583716178071674311 ~2013
308909437196178188743911 ~2013
308910488036178209760711 ~2013
3089504215124716033720912 ~2014
308964887396179297747911 ~2013
3089775503343256857046312 ~2015
308979523316179590466311 ~2013
3089933012924719464103312 ~2014
3089962000118539772000712 ~2014
308998769636179975392711 ~2013
309005354996180107099911 ~2013
309031148396180622967911 ~2013
Exponent Prime Factor Dig. Year
309045643316180912866311 ~2013
309047314916180946298311 ~2013
3090518464349448295428912 ~2015
3090615103718543690622312 ~2014
309062805716181256114311 ~2013
3090692134118544152804712 ~2014
309075706436181514128711 ~2013
309095418236181908364711 ~2013
309096459716181929194311 ~2013
309110518196182210363911 ~2013
309120739316182414786311 ~2013
309120937916182418758311 ~2013
3091210125718547260754312 ~2014
3091309507718547857046312 ~2014
3091310928730913109287112 ~2015
309133861316182677226311 ~2013
3091450123930914501239112 ~2015
309160370516183207410311 ~2013
309170726036183414520711 ~2013
309186727316183734546311 ~2013
309194226596183884531911 ~2013
309218166836184363336711 ~2013
309232184396184643687911 ~2013
309233695916184673918311 ~2013
3092357164330923571643112 ~2015
Exponent Prime Factor Dig. Year
309243485516184869710311 ~2013
309256556396185131127911 ~2013
3092667864168038693010312 ~2016
3092668033318556008199912 ~2014
3092712981718556277890312 ~2014
309278010836185560216711 ~2013
309283355636185667112711 ~2013
309284575196185691503911 ~2013
309330038516186600770311 ~2013
309343262396186865247911 ~2013
309347905436186958108711 ~2013
3093696293924749570351312 ~2014
309372259196187445183911 ~2013
309382311716187646234311 ~2013
3093854224118563125344712 ~2014
3094050121318564300727912 ~2014
3094198163318565188979912 ~2014
3094433581724755468653712 ~2014
309484753916189695078311 ~2013
309486776036189735520711 ~2013
309504831596190096631911 ~2013
3095064127718570384766312 ~2014
3095120665318570723991912 ~2014
3095126143180473279720712 ~2016
309557218436191144368711 ~2013
Home
5.142.307 digits
e-mail
25-10-26