Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11878094810323756189620712 ~2018
11878126673371268760039912 ~2019
11879622061123759244122312 ~2018
11879701955923759403911912 ~2018
11880452743123760905486312 ~2018
11880830767123761661534312 ~2018
11881879355923763758711912 ~2018
11883622315123767244630312 ~2018
11884829519923769659039912 ~2018
11885331359923770662719912 ~2018
11887014749923774029499912 ~2018
11888004725923776009451912 ~2018
11888938797771333632786312 ~2019
11889354527923778709055912 ~2018
11890026161923780052323912 ~2018
11891287425771347724554312 ~2019
11891397333771348384002312 ~2019
1189148948271664...20903916 2023
11891640607123783281214312 ~2018
11892836042323785672084712 ~2018
11893013563123786027126312 ~2018
11894433986323788867972712 ~2018
11894604365923789208731912 ~2018
11894724272323789448544712 ~2018
11894735855923789471711912 ~2018
Exponent Prime Factor Dig. Year
11895577310323791154620712 ~2018
11895851390323791702780712 ~2018
11897625224323795250448712 ~2018
11898034891123796069782312 ~2018
11898365201923796730403912 ~2018
11898684458323797368916712 ~2018
11898692083123797384166312 ~2018
11900096588323800193176712 ~2018
11900184098323800368196712 ~2018
1190062122315617...17303314 2023
11900796451123801592902312 ~2018
11900947994323801895988712 ~2018
11901366500323802733000712 ~2018
11902721621923805443243912 ~2018
11904088069123808176138312 ~2018
11905736365123811472730312 ~2018
11905944941923811889883912 ~2018
11907890713123815781426312 ~2018
11909105834323818211668712 ~2018
11910072787123820145574312 ~2018
11910244499923820488999912 ~2018
11911543985371469263911912 ~2019
11912665052323825330104712 ~2018
11914722433123829444866312 ~2018
11914976827371489860963912 ~2019
Exponent Prime Factor Dig. Year
11915029376323830058752712 ~2018
11915497747123830995494312 ~2018
11915966334171495798004712 ~2019
11916212725123832425450312 ~2018
11916512005123833024010312 ~2018
11916706484323833412968712 ~2018
11917124378323834248756712 ~2018
11917249340323834498680712 ~2018
11917366931923834733863912 ~2018
11917380683371504284099912 ~2019
11920680133123841360266312 ~2018
11920731961123841463922312 ~2018
11921438678323842877356712 ~2018
11922358835371534153011912 ~2019
11922383863123844767726312 ~2018
11923968025123847936050312 ~2018
11924228527123848457054312 ~2018
11924245579123848491158312 ~2018
11924916257923849832515912 ~2018
11925475945123850951890312 ~2018
11925842336323851684672712 ~2018
11926002266323852004532712 ~2018
11926017417771556104506312 ~2019
11926332098323852664196712 ~2018
11927334116323854668232712 ~2018
Exponent Prime Factor Dig. Year
11928349381123856698762312 ~2018
11928382109923856764219912 ~2018
11928401099923856802199912 ~2018
1192959667331772...56523915 2023
11929695284323859390568712 ~2018
1192976895491123...55515915 2023
11930026729123860053458312 ~2018
11930877563923861755127912 ~2018
11931223739923862447479912 ~2018
11931291327771587747966312 ~2019
11932318789123864637578312 ~2018
11932903855123865807710312 ~2018
11933340770323866681540712 ~2018
11933527586323867055172712 ~2018
11933904383923867808767912 ~2018
11934058261123868116522312 ~2018
11935149055123870298110312 ~2018
11936141096323872282192712 ~2018
11936143309771616859858312 ~2019
11937081905923874163811912 ~2018
11937129175123874258350312 ~2018
11937322421923874644843912 ~2018
11938024064323876048128712 ~2018
1193813141472865...39528114 2024
11938211371371629268227912 ~2019
Home
4.724.182 digits
e-mail
25-04-13