Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7958486675915916973351912 ~2016
7958533153115917066306312 ~2016
7959238082315918476164712 ~2016
7959746405915919492811912 ~2016
7959856260147759137560712 ~2017
7960197463115920394926312 ~2016
7960425923915920851847912 ~2016
7960610060315921220120712 ~2016
7960663817915921327635912 ~2016
7961346107963690768863312 ~2018
7962566438315925132876712 ~2016
7962926402315925852804712 ~2016
7963292057915926584115912 ~2016
7963361471915926722943912 ~2016
7963400450315926800900712 ~2016
7963444609115926889218312 ~2016
7963920403115927840806312 ~2016
7965330013747791980082312 ~2017
7966496509115932993018312 ~2016
7967361866315934723732712 ~2016
7968157563747808945382312 ~2017
7968271853915936543707912 ~2016
7968283583963746268671312 ~2018
7968304981115936609962312 ~2016
7968503054315937006108712 ~2016
Exponent Prime Factor Dig. Year
7968719138315937438276712 ~2016
796894905895402...61934314 2023
7970365581747822193490312 ~2017
7971484658315942969316712 ~2016
7971725011347830350067912 ~2017
7971769872147830619232712 ~2017
7973031593963784252751312 ~2018
7973092861115946185722312 ~2016
7973204063915946408127912 ~2016
7973383136315946766272712 ~2016
7973577622147841465732712 ~2017
7973671064315947342128712 ~2016
7973829619115947659238312 ~2016
7973850274163790802192912 ~2018
7974189025763793512205712 ~2018
7974283361347845700167912 ~2017
7975668919115951337838312 ~2016
7975737755915951475511912 ~2016
7975926895763807415165712 ~2018
7976322535115952645070312 ~2016
7976423036315952846072712 ~2016
7976532105747859192634312 ~2017
7976895992315953791984712 ~2016
7977313135115954626270312 ~2016
7977663452315955326904712 ~2016
Exponent Prime Factor Dig. Year
7978318024147869908144712 ~2017
7978338117747870028706312 ~2017
7978427882315956855764712 ~2016
7978460209115956920418312 ~2016
7978653841115957307682312 ~2016
7979294695115958589390312 ~2016
7979314679915958629359912 ~2016
7979913376763839307013712 ~2018
7980096626315960193252712 ~2016
7980231503915960463007912 ~2016
7980526267115961052534312 ~2016
7980724723115961449446312 ~2016
7981254692315962509384712 ~2016
7982277843747893667062312 ~2017
7982357291915964714583912 ~2016
7983494810315966989620712 ~2016
7983513931115967027862312 ~2016
7984010131115968020262312 ~2016
7984208617115968417234312 ~2016
7984215991347905295947912 ~2017
7984249017747905494106312 ~2017
7984682063915969364127912 ~2016
798626420211581...12015914 2024
7986907417115973814834312 ~2016
7988047218147928283308712 ~2017
Exponent Prime Factor Dig. Year
7988433484163907467872912 ~2018
7989377479115978754958312 ~2016
7989744085115979488170312 ~2016
7991171125115982342250312 ~2016
7992403489115984806978312 ~2016
7993086731915986173463912 ~2016
7993747489115987494978312 ~2016
7994944280315989888560712 ~2016
7994967584315989935168712 ~2016
7995570098315991140196712 ~2016
7995600758315991201516712 ~2016
7996097815115992195630312 ~2016
7996997281115993994562312 ~2016
7997396203115994792406312 ~2016
7997417563747984505382312 ~2017
7998344333915996688667912 ~2016
7998385451915996770903912 ~2016
7998446174315996892348712 ~2016
7999011005915998022011912 ~2016
7999473217115998946434312 ~2016
7999581148147997486888712 ~2017
7999893881915999787763912 ~2016
8001099691764008797533712 ~2018
8001271297116002542594312 ~2016
8001571333116003142666312 ~2016
Home
4.724.182 digits
e-mail
25-04-13