Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7357467980314714935960712 ~2016
7358200400314716400800712 ~2016
7359713143114719426286312 ~2016
7359937393114719874786312 ~2016
7360017277114720034554312 ~2016
7360405737744162434426312 ~2017
7360747051344164482307912 ~2017
7360950277344165701663912 ~2017
7361351947758890815581712 ~2017
7361401423344168408539912 ~2017
7361658727158893269816912 ~2017
7361721677914723443355912 ~2016
7362571189114725142378312 ~2016
7362695165914725390331912 ~2016
7362885740958903085927312 ~2017
7363443159744180658958312 ~2017
7363494305914726988611912 ~2016
7363742425114727484850312 ~2016
7364106019114728212038312 ~2016
7364343847114728687694312 ~2016
7364412427114728824854312 ~2016
7364611118314729222236712 ~2016
7364941291158919530328912 ~2017
7365298665173652986651112 ~2018
7365648353914731296707912 ~2016
Exponent Prime Factor Dig. Year
7365693326314731386652712 ~2016
7365824799744194948798312 ~2017
7365872042314731744084712 ~2016
7365984671914731969343912 ~2016
7366353549744198121298312 ~2017
7366578493114733156986312 ~2016
7367132233114734264466312 ~2016
7367515865914735031731912 ~2016
7367718529344206311175912 ~2017
7367785436314735570872712 ~2016
7368427501114736855002312 ~2016
7368890915914737781831912 ~2016
7368919507114737839014312 ~2016
7369214402314738428804712 ~2016
7369237595914738475191912 ~2016
7369480189114738960378312 ~2016
7369597849114739195698312 ~2016
7370031440314740062880712 ~2016
7370083121914740166243912 ~2016
7370711167973707111679112 ~2018
7370757119344224542715912 ~2017
7370764346314741528692712 ~2016
7370915005114741830010312 ~2016
7370976205114741952410312 ~2016
737112969076191...40188114 2024
Exponent Prime Factor Dig. Year
7371193445914742386891912 ~2016
7371403743744228422462312 ~2017
7371715315114743430630312 ~2016
7371760571914743521143912 ~2016
7371790472314743580944712 ~2016
7371910567114743821134312 ~2016
7372245617914744491235912 ~2016
7372444411158979555288912 ~2017
7372556664144235339984712 ~2017
7372614403114745228806312 ~2016
7373038441114746076882312 ~2016
7373336585914746673171912 ~2016
7374057397114748114794312 ~2016
7374271625914748543251912 ~2016
7374354071958994832575312 ~2017
7374388295958995106367312 ~2017
7375427557114750855114312 ~2016
737597145717272...56700714 2023
7376362100314752724200712 ~2016
7376380489744258282938312 ~2017
7376563909114753127818312 ~2016
7376917841914753835683912 ~2016
7376947820314753895640712 ~2016
7377215984314754431968712 ~2016
7377546415759020371325712 ~2017
Exponent Prime Factor Dig. Year
7378286670144269720020712 ~2017
7378330663114756661326312 ~2016
7378655418773786554187112 ~2018
7378810988314757621976712 ~2016
7379499164314758998328712 ~2016
7380192599914760385199912 ~2016
7381742315914763484631912 ~2016
7383236869114766473738312 ~2016
7383763118314767526236712 ~2016
7383838547914767677095912 ~2016
7384275830314768551660712 ~2016
7384828429744308970578312 ~2017
7385034290314770068580712 ~2016
7385323931914770647863912 ~2016
7385418739114770837478312 ~2016
7385827730314771655460712 ~2016
7386186415973861864159112 ~2018
7386204197344317225183912 ~2017
7386682712959093461703312 ~2017
7386769265914773538531912 ~2016
7387459766314774919532712 ~2016
7388528162314777056324712 ~2016
7388957804314777915608712 ~2016
7389112826314778225652712 ~2016
7389272891914778545783912 ~2016
Home
4.724.182 digits
e-mail
25-04-13