Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7105113811114210227622312 ~2016
710514148075867...47620715 2023
7105318483114210636966312 ~2016
7105342128142632052768712 ~2017
7105625113114211250226312 ~2016
7105698128314211396256712 ~2016
7105934705956847477647312 ~2017
7106198819914212397639912 ~2016
7106582299114213164598312 ~2016
7106824991914213649983912 ~2016
7106912284371069122843112 ~2017
7107040025914214080051912 ~2016
7107460189114214920378312 ~2016
7107800434156862403472912 ~2017
7108364411914216728823912 ~2016
7108559095114217118190312 ~2016
7109518901914219037803912 ~2016
7110043376314220086752712 ~2016
7110054164314220108328712 ~2016
7110410363914220820727912 ~2016
7110539605114221079210312 ~2016
7110661604314221323208712 ~2016
7110908247742665449486312 ~2017
7111042892314222085784712 ~2016
7111721390314223442780712 ~2016
Exponent Prime Factor Dig. Year
7112373491914224746983912 ~2016
7113097349914226194699912 ~2016
7113408485956907267887312 ~2017
7113881120314227762240712 ~2016
7114555343914229110687912 ~2016
7114689415114229378830312 ~2016
7115203555342691221331912 ~2017
7115312171914230624343912 ~2016
7115412295114230824590312 ~2016
7115568073114231136146312 ~2016
7115641277914231282555912 ~2016
7116439159114232878318312 ~2016
7116684190371166841903112 ~2017
7118565067114237130134312 ~2016
7118815129114237630258312 ~2016
7119316219114238632438312 ~2016
7120516381114241032762312 ~2016
7120859795914241719591912 ~2016
7121150486314242300972712 ~2016
7121372983114242745966312 ~2016
7121777279914243554559912 ~2016
7122625400314245250800712 ~2016
7122899808142737398848712 ~2017
7122945950314245891900712 ~2016
7123696789114247393578312 ~2016
Exponent Prime Factor Dig. Year
7123747579114247495158312 ~2016
7123923997114247847994312 ~2016
7123953776314247907552712 ~2016
7123964717914247929435912 ~2016
7124003167114248006334312 ~2016
7124632483742747794902312 ~2017
7124762690314249525380712 ~2016
7124986253914249972507912 ~2016
7126203937114252407874312 ~2016
7126289014142757734084712 ~2017
7126595181742759571090312 ~2017
7126607647114253215294312 ~2016
7126642984757013143877712 ~2017
7126681059742760086358312 ~2017
7126821725914253643451912 ~2016
7127411408314254822816712 ~2016
7127423300314254846600712 ~2016
7127802446314255604892712 ~2016
7128407635114256815270312 ~2016
712843195913036...14576714 2023
7128552073114257104146312 ~2016
7128595019914257190039912 ~2016
7128700953742772205722312 ~2017
7129133840314258267680712 ~2016
7129212746314258425492712 ~2016
Exponent Prime Factor Dig. Year
7129726211914259452423912 ~2016
7130320975114260641950312 ~2016
7130693301742784159810312 ~2017
7131009829114262019658312 ~2016
7131216013114262432026312 ~2016
7131899351914263798703912 ~2016
7132126681114264253362312 ~2016
7132842857342797057143912 ~2017
7133022995914266045991912 ~2016
7133171359742799028158312 ~2017
7133533871914267067743912 ~2016
7133563555742801381334312 ~2017
7134056400771340564007112 ~2017
7134189233914268378467912 ~2016
7134267256371342672563112 ~2017
7135175066314270350132712 ~2016
7135321309742811927858312 ~2017
7135380698314270761396712 ~2016
7135819487914271638975912 ~2016
7136700035957093600287312 ~2017
7137354401914274708803912 ~2016
7137695162314275390324712 ~2016
7137818113114275636226312 ~2016
7138095661114276191322312 ~2016
713812352593497...27691114 2023
Home
4.724.182 digits
e-mail
25-04-13