Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5864760399735188562398312 ~2016
5864846187158648461871112 ~2017
5864960281111729920562312 ~2015
5865026599111730053198312 ~2015
5865358147111730716294312 ~2015
5865549208746924393669712 ~2017
5866394083111732788166312 ~2015
5867042783911734085567912 ~2015
5867328967958673289679112 ~2017
5867482453111734964906312 ~2015
5867792351946942338815312 ~2017
5867894198311735788396712 ~2015
5868130913911736261827912 ~2015
5868282758311736565516712 ~2015
5868319089735209914538312 ~2016
5868341297911736682595912 ~2015
5868517141111737034282312 ~2015
5869489652311738979304712 ~2015
5869682478758696824787112 ~2017
5869892096311739784192712 ~2015
5869923353911739846707912 ~2015
5870592991111741185982312 ~2015
5870683515735224101094312 ~2016
5871060581911742121163912 ~2015
5871080904135226485424712 ~2016
Exponent Prime Factor Dig. Year
5871105211111742210422312 ~2015
5871370854135228225124712 ~2016
5871771415111743542830312 ~2015
5871778039146974224312912 ~2017
5871987211111743974422312 ~2015
5872527825735235166954312 ~2016
5872637024311745274048712 ~2015
5872938827911745877655912 ~2015
5873849816311747699632712 ~2015
5874301501146994412008912 ~2017
5874563012311749126024712 ~2015
5874601967911749203935912 ~2015
5874643329735247859978312 ~2016
5875033003147000264024912 ~2017
5875475327911750950655912 ~2015
5875769021911751538043912 ~2015
5876116058311752232116712 ~2015
5876250743911752501487912 ~2015
5876380598311752761196712 ~2015
5876717701111753435402312 ~2015
5876820241747014561933712 ~2017
5876855000311753710000712 ~2015
5877290276311754580552712 ~2015
5877858800311755717600712 ~2015
5878450537111756901074312 ~2015
Exponent Prime Factor Dig. Year
5878974971911757949943912 ~2015
5879055421111758110842312 ~2015
5879411429911758822859912 ~2015
5879760580747038084645712 ~2017
5879804667735278828006312 ~2016
5880135170947041081367312 ~2017
5880376843111760753686312 ~2015
5880461548147043692384912 ~2017
5881407025111762814050312 ~2015
5881699837111763399674312 ~2015
5882733111735296398670312 ~2016
5882942605735297655634312 ~2016
5883081163111766162326312 ~2015
5883227237911766454475912 ~2015
5883252835111766505670312 ~2015
5883600871111767201742312 ~2015
5883706393958837063939112 ~2017
5883859451911767718903912 ~2015
5883970327111767940654312 ~2015
5884388185111768776370312 ~2015
5884585627111769171254312 ~2015
5884733182747077865461712 ~2017
5884746374311769492748712 ~2015
5885385473911770770947912 ~2015
5885835977911771671955912 ~2015
Exponent Prime Factor Dig. Year
5886018104311772036208712 ~2015
5886581698358865816983112 ~2017
5886828893911773657787912 ~2015
588690193012719...91706314 2023
5886986456311773972912712 ~2015
5887063615735322381694312 ~2016
5887273259911774546519912 ~2015
5887708787335326252723912 ~2016
5888329898311776659796712 ~2015
5888443426135330660556712 ~2016
5888619896311777239792712 ~2015
5888961121111777922242312 ~2015
5889395833958893958339112 ~2017
5890306078135341836468712 ~2016
5890468214311780936428712 ~2015
5891374298311782748596712 ~2015
5892319987111784639974312 ~2015
5892713801911785427603912 ~2015
5892927313111785854626312 ~2015
5892967183111785934366312 ~2015
5893184107111786368214312 ~2015
5893432547911786865095912 ~2015
5893576632135361459792712 ~2016
5894012515735364075094312 ~2016
5894027765911788055531912 ~2015
Home
4.724.182 digits
e-mail
25-04-13