Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
494282900639885658012711 ~2015
494328179639886563592711 ~2015
494330353319886607066311 ~2015
4943361461369207060458312 ~2017
494360559239887211184711 ~2015
494377807199887556143911 ~2015
494386128719887722574311 ~2015
4944148256969218075596712 ~2017
494440170119888803402311 ~2015
494453421839889068436711 ~2015
494453891399889077827911 ~2015
494455589519889111790311 ~2015
494523588714045...55647914 2023
494532470999890649419911 ~2015
4945392825729672356954312 ~2016
4945450992129672705952712 ~2016
4945457700129672746200712 ~2016
494547860399890957207911 ~2015
4945861238939566889911312 ~2016
494604405839892088116711 ~2015
4946279053729677674322312 ~2016
494660987519893219750311 ~2015
494676039599893520791911 ~2015
494696078519893921570311 ~2015
494748043319894960866311 ~2015
Exponent Prime Factor Dig. Year
494763277799895265555911 ~2015
494764412519895288250311 ~2015
494775572039895511440711 ~2015
494783722919895674458311 ~2015
494819353199896387063911 ~2015
494830890119896617802311 ~2015
494847704039896954080711 ~2015
494864377199897287543911 ~2015
494917251839898345036711 ~2015
494962666439899253328711 ~2015
494974670399899493407911 ~2015
495007812839900156256711 ~2015
4950195349739601562797712 ~2016
4950290509729701743058312 ~2016
495040657919900813158311 ~2015
495098203199901964063911 ~2015
495108965039902179300711 ~2015
495163708792733...72520914 2024
495185792833733...77938314 2024
495240840599904816811911 ~2015
495266812199905336243911 ~2015
495274599119905491982311 ~2015
495279951239905599024711 ~2015
495285279599905705591911 ~2015
495300311519906006230311 ~2015
Exponent Prime Factor Dig. Year
495307517999906150359911 ~2015
495327085919906541718311 ~2015
495328325399906566507911 ~2015
495342575999906851519911 ~2015
495351373319907027466311 ~2015
495359481839907189636711 ~2015
4953663259739629306077712 ~2016
495375396599907507931911 ~2015
495375756839907515136711 ~2015
495409528199908190563911 ~2015
495434612519908692250311 ~2015
495451336919909026738311 ~2015
495477751919909555038311 ~2015
4955032657729730195946312 ~2016
495507668519910153370311 ~2015
495524842799910496855911 ~2015
495557441519911148830311 ~2015
495559674599911193491911 ~2015
495570621119911412422311 ~2015
495583146719911662934311 ~2015
495599416439911988328711 ~2015
495611557199912231143911 ~2015
4956257482739650059861712 ~2016
495625981919912519638311 ~2015
4956462917329738777503912 ~2016
Exponent Prime Factor Dig. Year
4956648310349566483103112 ~2016
495680317439913606348711 ~2015
495692836919913856738311 ~2015
4957593653369406311146312 ~2017
495776395439915527908711 ~2015
495777748439915554968711 ~2015
495802458599916049171911 ~2015
495804030119916080602311 ~2015
4958266871939666134975312 ~2016
4958303349729749820098312 ~2016
495843216239916864324711 ~2015
495843289919916865798311 ~2015
495897544799917950895911 ~2015
4959046006129754276036712 ~2016
495941123639918822472711 ~2015
495971336999919426739911 ~2015
495992913599919858271911 ~2015
495997034519919940690311 ~2015
496047006119920940122311 ~2015
496048589039920971780711 ~2015
4960497760739683982085712 ~2016
496064222698452...54637714 2023
4961201409729767208458312 ~2016
496131574919922631498311 ~2015
4961560898939692487191312 ~2016
Home
4.724.182 digits
e-mail
25-04-13