Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
4258586564959620211908712 ~2016
425861167192211...00504915 2025
425871866398517437327911 ~2014
425881183798517623675911 ~2014
425915591638518311832711 ~2014
425927076598518541531911 ~2014
425930179198518603583911 ~2014
4259404249725556425498312 ~2015
425956163638519123272711 ~2014
425967210598519344211911 ~2014
426028318798520566375911 ~2014
426029866198520597323911 ~2014
4260617715725563706294312 ~2015
426102272518522045450311 ~2014
4261336679325568020075912 ~2015
4261397835768182365371312 ~2016
426144663718522893274311 ~2014
426157446598523148931911 ~2014
426172043518523440870311 ~2014
426176667718523533354311 ~2014
4261771053725570626322312 ~2015
426179102398523582047911 ~2014
426181437598523628751911 ~2014
4261961685725571770114312 ~2015
426237741838524754836711 ~2014
Exponent Prime Factor Dig. Year
4262447677734099581421712 ~2016
4262900551325577403307912 ~2015
4262935975725577615854312 ~2015
4262992450734103939605712 ~2016
426327590638526551812711 ~2014
426338673718526773474311 ~2014
426340145398526802907911 ~2014
4264054810342640548103112 ~2016
426412478518528249570311 ~2014
4265188270134121506160912 ~2016
4265330617759714628647912 ~2016
4265337991942653379919112 ~2016
426573327598531466551911 ~2014
4265808511759721319163912 ~2016
426596960638531939212711 ~2014
426619167118532383342311 ~2014
4266364903134130919224912 ~2016
4266695095134133560760912 ~2016
426686955833909...93144715 2024
426720116638534402332711 ~2014
426784553998535691079911 ~2014
426789813118535796262311 ~2014
4267974956934143799655312 ~2016
426798079318535961586311 ~2014
4268095387734144763101712 ~2016
Exponent Prime Factor Dig. Year
426810345598536206911911 ~2014
426812671438536253428711 ~2014
4268463958368295423332912 ~2016
426850500718537010014311 ~2014
426852204718537044094311 ~2014
426946580038538931600711 ~2014
426983004718539660094311 ~2014
426987958318539759166311 ~2014
426994893598539897871911 ~2014
4269985306734159882453712 ~2016
427010486998540209739911 ~2014
427021066318540421326311 ~2014
427038205918540764118311 ~2014
427041706438540834128711 ~2014
427058990638541179812711 ~2014
427068541198541370823911 ~2014
4270772674134166181392912 ~2016
4270844068125625064408712 ~2015
427094356798541887135911 ~2014
427108817998542176359911 ~2014
4271128939134169031512912 ~2016
4271153361142711533611112 ~2016
427127971918542559438311 ~2014
427227536638544550732711 ~2014
427245744078794...59368915 2024
Exponent Prime Factor Dig. Year
427249965718544999314311 ~2014
427280196838545603936711 ~2014
427282194598545643891911 ~2014
427291745038545834900711 ~2014
427295289238545905784711 ~2014
427311834718546236694311 ~2014
4273144319325638865915912 ~2015
4273500673759829009431912 ~2016
427369826998547396539911 ~2014
427397917198547958343911 ~2014
427421443318548428866311 ~2014
4274217449325645304695912 ~2015
427450665311581...61647114 2023
427454367598549087351911 ~2014
427487758198549755163911 ~2014
427504453198550089063911 ~2014
427513996438550279928711 ~2014
427552028638551040572711 ~2014
427554246118551084922311 ~2014
427576782598551535651911 ~2014
427621622038552432440711 ~2014
427643737798552874755911 ~2014
427650533998553010679911 ~2014
4276676443725660058662312 ~2015
427691130838553822616711 ~2014
Home
4.724.182 digits
e-mail
25-04-13