Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
110686375432213727508711 ~2009
110700537832214010756711 ~2009
110707813912214156278311 ~2009
110707911112214158222311 ~2009
110708878798856710303311 ~2011
110716788112214335762311 ~2009
1107182749970859695993712 ~2013
110725904392214518087911 ~2009
110726293336643577599911 ~2011
110726343118858107448911 ~2011
110727630832214552616711 ~2009
110739018736644341123911 ~2011
110747018878859761509711 ~2011
110747803312214956066311 ~2009
110748427432214968548711 ~2009
110748633112214972662311 ~2009
110753921992215078439911 ~2009
110756810416645408624711 ~2011
110758838392215176767911 ~2009
110762238112215244762311 ~2009
110762891512215257830311 ~2009
110780865592215617311911 ~2009
110781799912215635998311 ~2009
110785001936647100115911 ~2011
1107863793759824644859912 ~2013
Exponent Prime Factor Dig. Year
110790188512215803770311 ~2009
110792341498863387319311 ~2011
1107929123919942724230312 ~2012
110805961792216119235911 ~2009
1108083114719945496064712 ~2012
110808734392216174687911 ~2009
110808960592216179211911 ~2009
110814837712216296754311 ~2009
110815091992216301839911 ~2009
110815092232216301844711 ~2009
110816160112216323202311 ~2009
110821475992216429519911 ~2009
110822036032216440720711 ~2009
110829159832216583196711 ~2009
110831808416649908504711 ~2011
110835880318866870424911 ~2011
110849743912216994878311 ~2009
110850110392217002207911 ~2009
110850593992217011879911 ~2009
110853504832217070096711 ~2009
110854609432217092188711 ~2009
110855644912217112898311 ~2009
110861898112217237962311 ~2009
110863393376651803602311 ~2011
1108643107128824720784712 ~2012
Exponent Prime Factor Dig. Year
1108646023911086460239112 ~2011
110871213232217424264711 ~2009
110883068336652984099911 ~2011
110883123112217662462311 ~2009
110885749432217714988711 ~2009
110887427992217748559911 ~2009
1108875294711088752947112 ~2011
110891730712217834614311 ~2009
110891885032217837700711 ~2009
110897172112217943442311 ~2009
110897856832217957136711 ~2009
110900664832218013296711 ~2009
110903119432218062388711 ~2009
110905965776654357946311 ~2011
110909008192218180163911 ~2009
110912773912218255478311 ~2009
110913824818873105984911 ~2011
110916933112218338662311 ~2009
110917506712218350134311 ~2009
110921588512218431770311 ~2009
1109228053317747648852912 ~2012
110924191792218483835911 ~2009
110925544432218510888711 ~2009
110927901232218558024711 ~2009
110929767592218595351911 ~2009
Exponent Prime Factor Dig. Year
110930893792218617875911 ~2009
110932202512218644050311 ~2009
110933449192218668983911 ~2009
1109401510311094015103112 ~2011
110942943112218858862311 ~2009
110946448616656786916711 ~2011
110948757176656925430311 ~2011
110952018112219040362311 ~2009
110963304112219266082311 ~2009
110966663632219333272711 ~2009
110967015232219340304711 ~2009
110968012978877441037711 ~2011
110985402592219708051911 ~2009
110986644712219732894311 ~2009
110989570912219791418311 ~2009
110994943192219898863911 ~2009
110995819912219916398311 ~2009
1109966173333298985199112 ~2012
110997107992219942159911 ~2009
110997276232219945524711 ~2009
111002319112220046382311 ~2009
111007472392220149447911 ~2009
111017254432220345088711 ~2009
111033798112220675962311 ~2009
111035005192220700103911 ~2009
Home
5.037.460 digits
e-mail
25-09-07