Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
97521063591950421271911 ~2009
97521129831950422596711 ~2009
97525638111950512762311 ~2009
97529516511950590330311 ~2009
97533747231950674944711 ~2009
97533866631950677332711 ~2009
97536566511950731330311 ~2009
97538116311950762326311 ~2009
97540609191950812183911 ~2009
97545004017803600320911 ~2011
97548828831950976576711 ~2009
97548918231950978364711 ~2009
975498025315607968404912 ~2011
97551753591951035071911 ~2009
97552008111951040162311 ~2009
97556627511951132550311 ~2009
97563235197805058815311 ~2011
97563365991951267319911 ~2009
975641428929269242867112 ~2012
97566141111951322822311 ~2009
97569512775854170766311 ~2010
975714892315611438276912 ~2011
97572574791951451495911 ~2009
97574043231951480864711 ~2009
975779900325370277407912 ~2012
Exponent Prime Factor Dig. Year
97578067311951561346311 ~2009
97578372831951567456711 ~2009
97580558031951611160711 ~2009
97582333431951646668711 ~2009
97585057191951701143911 ~2009
97592689191951853783911 ~2009
97592889711951857794311 ~2009
97594658511951893170311 ~2009
97597329591951946591911 ~2009
97600180015856010800711 ~2010
97600531677808042533711 ~2011
97603697991952073959911 ~2009
97603921135856235267911 ~2010
97608404031952168080711 ~2009
976128106315618049700912 ~2011
97612846791952256935911 ~2009
97622688711952453774311 ~2009
97625927535857555651911 ~2010
97629863391952597267911 ~2009
97633617111952672342311 ~2009
97636923535858215411911 ~2010
976380855723433140536912 ~2012
97640818135858449087911 ~2010
97650540111953010802311 ~2009
976523955723436574936912 ~2012
Exponent Prime Factor Dig. Year
97659116511953182330311 ~2009
97663686591953273731911 ~2009
97669727031953394540711 ~2009
97670206879767020687111 ~2011
97671043935860262635911 ~2010
97671324775860279486311 ~2010
97676420391953528407911 ~2009
97684639311953692786311 ~2009
976865164723444763952912 ~2012
97689025191953780503911 ~2009
97690726191953814523911 ~2009
97697857191953957143911 ~2009
97699248231953984964711 ~2009
97701278215862076692711 ~2010
97701526431954030528711 ~2009
97704594831954091896711 ~2009
97710033111954200662311 ~2009
97721726391954434527911 ~2009
97725484311954509686311 ~2009
97729376511954587530311 ~2009
97732999375863979962311 ~2010
97733483631954669672711 ~2009
97738042911954760858311 ~2009
97744450975864667058311 ~2010
97754017191955080343911 ~2009
Exponent Prime Factor Dig. Year
97754635311955092706311 ~2009
97756944975865416698311 ~2010
97759506831955190136711 ~2009
97766865711955337314311 ~2009
97767824511955356490311 ~2009
97769988231955399764711 ~2009
97772222391955444447911 ~2009
97777423975866645438311 ~2010
97779472935866768375911 ~2010
97781358831955627176711 ~2009
97782052191955641043911 ~2009
97783603911955672078311 ~2009
97783840617822707248911 ~2011
97784139711955682794311 ~2009
97787554431955751088711 ~2009
97790116911955802338311 ~2009
97790559591955811191911 ~2009
97795194111955903882311 ~2009
97799450991955989019911 ~2009
97801025391956020507911 ~2009
97804846431956096928711 ~2009
97810015639781001563111 ~2011
97815612591956312251911 ~2009
97826406831956528136711 ~2009
97836226797826898143311 ~2011
Home
5.037.460 digits
e-mail
25-09-07