Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
699843658768584678552712 ~2012
69986916711399738334311 ~2008
69990002511399800050311 ~2008
69992224911399844498311 ~2008
69992421111399848422311 ~2008
69992466231399849324711 ~2008
69993017031399860340711 ~2008
69994910991399898219911 ~2008
700024858311200397732912 ~2010
70002696317000269631111 ~2010
70003949391400078987911 ~2008
70004858395600388671311 ~2009
70006450975600516077711 ~2009
70006610991400132219911 ~2008
70007163895600573111311 ~2009
70007373711400147474311 ~2008
70008784311400175686311 ~2008
70013085111400261702311 ~2008
70013487711400269754311 ~2008
70014787791400295755911 ~2008
70016635795601330863311 ~2009
70021198791400423975911 ~2008
70025196774201511806311 ~2009
70030216311400604326311 ~2008
70033460875602676869711 ~2009
Exponent Prime Factor Dig. Year
70034413311400688266311 ~2008
70036157631400723152711 ~2008
70041216231400824324711 ~2008
70041961311400839226311 ~2008
70042641534202558491911 ~2009
700435277912607835002312 ~2010
70046367831400927356711 ~2008
70048190991400963819911 ~2008
70048729431400974588711 ~2008
70049947791400998955911 ~2008
700499779337826988082312 ~2011
70054771311401095426311 ~2008
70056181615604494528911 ~2009
70058432031401168640711 ~2008
70058674374203520462311 ~2009
70059992391401199847911 ~2008
70060990134203659407911 ~2009
70061315511401226310311 ~2008
70061861991401237239911 ~2008
70062291415604983312911 ~2009
70062504831401250096711 ~2008
70064805711401296114311 ~2008
70065227031401304540711 ~2008
70065688791401313775911 ~2008
70067471339809445986311 ~2010
Exponent Prime Factor Dig. Year
70069232991401384659911 ~2008
70070350375605628029711 ~2009
70075086711401501734311 ~2008
70078584711401571694311 ~2008
70081058031401621160711 ~2008
70086385134205183107911 ~2009
700876897315419291740712 ~2010
70088826797008882679111 ~2010
70089331315607146504911 ~2009
70090449231401808984711 ~2008
70091017615607281408911 ~2009
70092058311401841166311 ~2008
70092262911401845258311 ~2008
700938343923831903692712 ~2011
70100334475608026757711 ~2009
70101722934206103375911 ~2009
70103765391402075307911 ~2008
70104192711402083854311 ~2008
70106211174206372670311 ~2009
70106475415608518032911 ~2009
70106929431402138588711 ~2008
70107937911402158758311 ~2008
70110138111402202762311 ~2008
70111572711402231454311 ~2008
70116084197011608419111 ~2010
Exponent Prime Factor Dig. Year
70116484614206989076711 ~2009
70118978031402379560711 ~2008
70122368774207342126311 ~2009
70123153075609852245711 ~2009
70132904631402658092711 ~2008
701371777112624691987912 ~2010
70138141791402762835911 ~2008
70151534991403030699911 ~2008
70151614311403032286311 ~2008
70152555197015255519111 ~2010
70156362231403127244711 ~2008
70159336974209560218311 ~2009
70159840134209590407911 ~2009
70162663431403253268711 ~2008
70163737191403274743911 ~2008
70167159895613372791311 ~2009
70167305511403346110311 ~2008
70170513111403410262311 ~2008
70173808374210428502311 ~2009
70174150191403483003911 ~2008
70174573791403491475911 ~2008
70177512591403550251911 ~2008
70177770231403555404711 ~2008
70177909379824907311911 ~2010
70177980797017798079111 ~2010
Home
5.157.210 digits
e-mail
25-11-02