Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
199537890593990757811911 ~2011
1995390901311972345407912 ~2013
199540422713990808454311 ~2011
1995412225711972473354312 ~2013
199559395793991187915911 ~2011
199569241313991384826311 ~2011
199576313393991526267911 ~2011
199576528313991530566311 ~2011
1995931253327943037546312 ~2014
199594910993991898219911 ~2011
199603162793992063255911 ~2011
199617660593992353211911 ~2011
199619741633992394832711 ~2011
1996209613935931773050312 ~2014
199653099713993061994311 ~2011
1996595329115972762632912 ~2013
1996614182347918740375312 ~2014
199663974593993279491911 ~2011
1997160750111982964500712 ~2013
1997272591715978180733712 ~2013
199738376993994767539911 ~2011
199741762193994835243911 ~2011
199750393193995007863911 ~2011
199752578033995051560711 ~2011
1997583057711985498346312 ~2013
Exponent Prime Factor Dig. Year
1997591617347942198815312 ~2014
1997900536331966408580912 ~2014
1998049177919980491779112 ~2013
199810688393996213767911 ~2011
199811439113996228782311 ~2011
199827816713996556334311 ~2011
199832710433996654208711 ~2011
199837531433996750628711 ~2011
1998428898111990573388712 ~2013
1998503434111991020604712 ~2013
199868178593997363571911 ~2011
199868680433997373608711 ~2011
1998764204915990113639312 ~2013
199886904713997738094311 ~2011
1998907147711993442886312 ~2013
199918662113998373242311 ~2011
1999201804715993614437712 ~2013
1999310319731988965115312 ~2014
1999484312915995874503312 ~2013
1999551377915996411023312 ~2013
1999578415711997470494312 ~2013
199965869033999317380711 ~2011
199967636393999352727911 ~2011
199981453793999629075911 ~2011
199989018833999780376711 ~2011
Exponent Prime Factor Dig. Year
199996276433999925528711 ~2011
200004710634000094212711 ~2011
200014769034000295380711 ~2011
200020286034000405720711 ~2011
200020979394000419587911 ~2011
2000374846112002249076712 ~2013
200043186114000863722311 ~2011
200047175994000943519911 ~2011
2000524525716004196205712 ~2013
200063287314001265746311 ~2011
200063393994001267879911 ~2011
2000637799116005102392912 ~2013
2000665666112003993996712 ~2013
200070779394001415587911 ~2011
2000735851728010301923912 ~2014
2000743140112004458840712 ~2013
200078467914001569358311 ~2011
2000920204736016563684712 ~2014
2001008238748024197728912 ~2014
200150574594003011491911 ~2011
200150764434003015288711 ~2011
200162810034003256200711 ~2011
200171302914003426058311 ~2011
200172161394003443227911 ~2011
200191950234003839004711 ~2011
Exponent Prime Factor Dig. Year
200195718234003914364711 ~2011
200198376114003967522311 ~2011
2002023773328028332826312 ~2014
200205446994004108939911 ~2011
200205730914004114618311 ~2011
200224830594004496611911 ~2011
200232467034004649340711 ~2011
200238185394004763707911 ~2011
200240821914004816438311 ~2011
200241751314004835026311 ~2011
2002424513312014547079912 ~2013
200253404034005068080711 ~2011
200260986234005219724711 ~2011
2002637872112015827232712 ~2013
2002657135968090342620712 ~2014
2002770052112016620312712 ~2013
200288770194005775403911 ~2011
200308689834006173796711 ~2011
200326023114006520462311 ~2011
200337310314006746206311 ~2011
200343971394006879427911 ~2011
2003453114916027624919312 ~2013
200346857994006937159911 ~2011
2003483706132055739297712 ~2014
200362507914007250158311 ~2011
Home
4.724.182 digits
e-mail
25-04-13