Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1862649719914901197759312 ~2013
186270124793725402495911 ~2011
186272303993725446079911 ~2011
1862724425311176346551912 ~2012
1862738749711176432498312 ~2012
186289220513725784410311 ~2011
1862910111129806561777712 ~2013
1863046391311178278347912 ~2012
186324012833726480256711 ~2011
1863425980111180555880712 ~2012
186349568033726991360711 ~2011
186354257993727085159911 ~2011
186364983713727299674311 ~2011
186376577393727531547911 ~2011
186378511313727570226311 ~2011
1863935935711183615614312 ~2012
186395879033727917580711 ~2011
186396712433727934248711 ~2011
186403339793728066795911 ~2011
1864189699311185138195912 ~2012
1864210247326098943462312 ~2013
186431980433728639608711 ~2011
186436981193728739623911 ~2011
1864404535311186427211912 ~2012
1864450645918644506459112 ~2013
Exponent Prime Factor Dig. Year
186452832593729056651911 ~2011
186455283833729105676711 ~2011
186471604913729432098311 ~2011
186476811833729536236711 ~2011
186495269393729905387911 ~2011
1865091832329841469316912 ~2013
186510267833730205356711 ~2011
1865137853311190827119912 ~2012
186541785833730835716711 ~2011
186542863313730857266311 ~2011
186543177233730863544711 ~2011
186554619113731092382311 ~2011
186558489833731169796711 ~2011
186563630513731272610311 ~2011
186577517513731550350311 ~2011
186579230993731584619911 ~2011
186587472593731749451911 ~2011
186589235393731784707911 ~2011
1866099457918660994579112 ~2013
186647910593732958211911 ~2011
1866565564714932524517712 ~2013
186669009713733380194311 ~2011
186669459593733389191911 ~2011
186679979513733599590311 ~2011
186683135633733662712711 ~2011
Exponent Prime Factor Dig. Year
186687370193733747403911 ~2011
1866890640718668906407112 ~2013
1866926848329870829572912 ~2013
186706705193734134103911 ~2011
1867105861714936846893712 ~2013
1867229361129875669777712 ~2013
186726691313734533826311 ~2011
186728088593734561771911 ~2011
1867315771711203894630312 ~2012
186732275393734645507911 ~2011
186749603033734992060711 ~2011
186752076713735041534311 ~2011
1867563766111205382596712 ~2012
186765796433735315928711 ~2011
186767774993735355499911 ~2011
186776903513735538070311 ~2011
186779509433735590188711 ~2011
1867885440141093479682312 ~2014
186794862113735897242311 ~2011
1868072360914944578887312 ~2013
186807980633736159612711 ~2011
186809825633736196512711 ~2011
186811573433736231468711 ~2011
186813587393736271747911 ~2011
186828122513736562450311 ~2011
Exponent Prime Factor Dig. Year
186851402513737028050311 ~2011
1868695165114949561320912 ~2013
186889468793737789375911 ~2011
186896004833737920096711 ~2011
186912422393738248447911 ~2011
186916672313738333446311 ~2011
186924371993738487439911 ~2011
186925937393738518747911 ~2011
1869268487311215610923912 ~2012
186928738913738574778311 ~2011
1869310960111215865760712 ~2012
1869341075311216046451912 ~2012
186936086513738721730311 ~2011
186941612033738832240711 ~2011
186944746913738894938311 ~2011
186960674513739213490311 ~2011
186960925433739218508711 ~2011
186966897833739337956711 ~2011
186981488633739629772711 ~2011
186987066713739741334311 ~2011
1869881299714959050397712 ~2013
187006217633740124352711 ~2011
187022489633740449792711 ~2011
187033126433740662528711 ~2011
187034033993740680679911 ~2011
Home
4.724.182 digits
e-mail
25-04-13