Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4575512411915102482310 ~2006
4575533591915106718310 ~2006
4575774551915154910310 ~2006
45758471393660677711311 ~2008
45759245573660739645711 ~2008
45760687277321709963311 ~2009
4576171763915234352710 ~2006
45762338537321974164911 ~2009
45764244773661139581711 ~2008
45765566172745933970311 ~2008
457681122110068984686312 ~2009
457684183713730525511112 ~2009
4576890239915378047910 ~2006
457712297354925475676112 ~2011
4577197139915439427910 ~2006
4577263403915452680710 ~2006
45775081514577508151111 ~2008
4577695151915539030310 ~2006
4577824943915564988710 ~2006
4577962979915592595910 ~2006
45780810732746848643911 ~2008
45781206372746872382311 ~2008
4578326531915665306310 ~2006
4578460823915692164710 ~2006
4578601871915720374310 ~2006
Exponent Prime Factor Digits Year
4578770051915754010310 ~2006
4579275359915855071910 ~2006
4579294523915858904710 ~2006
4579319483915863896710 ~2006
4579376723915875344710 ~2006
4579536239915907247910 ~2006
4579578551915915710310 ~2006
4579764779915952955910 ~2006
4579946411915989282310 ~2006
45801607212748096432711 ~2008
4580161739916032347910 ~2006
45801834732748110083911 ~2008
4580228099916045619910 ~2006
4580328359916065671910 ~2006
4580422163916084432710 ~2006
4580471111916094222310 ~2006
4580553203916110640710 ~2006
45808769572748526174311 ~2008
4580961779916192355910 ~2006
4581136139916227227910 ~2006
458117079130235727220712 ~2010
4581282551916256510310 ~2006
45813248573665059885711 ~2008
45814555732748873343911 ~2008
45815029798246705362311 ~2009
Exponent Prime Factor Digits Year
4581549491916309898310 ~2006
4581643931916328786310 ~2006
45817866194581786619111 ~2008
4581792191916358438310 ~2006
4581849719916369943910 ~2006
4581945911916389182310 ~2006
4582111571916422314310 ~2006
4582112939916422587910 ~2006
45821863973665749117711 ~2008
4582630103916526020710 ~2006
4582655471916531094310 ~2006
4582823471916564694310 ~2006
45830460718249482927911 ~2009
4583134823916626964710 ~2006
4583256311916651262310 ~2006
458358538913750756167112 ~2009
45836575998250583678311 ~2009
4583730023916746004710 ~2006
4584103319916820663910 ~2006
4584285131916857026310 ~2006
45844750332750685019911 ~2008
4584663383916932676710 ~2006
458466643922006398907312 ~2010
4584783503916956700710 ~2006
45849844212750990652711 ~2008
Exponent Prime Factor Digits Year
4585063739917012747910 ~2006
4585074419917014883910 ~2006
4585137083917027416710 ~2006
4585158443917031688710 ~2006
4585159499917031899910 ~2006
458546644311005119463312 ~2009
4585836719917167343910 ~2006
4585973999917194799910 ~2006
45860170313668813624911 ~2008
45861501314586150131111 ~2008
4586203091917240618310 ~2006
4586272331917254466310 ~2006
4586377391917275478310 ~2006
45866857394586685739111 ~2008
45867505493669400439311 ~2008
4586788883917357776710 ~2006
45868023914586802391111 ~2008
45868565532752113931911 ~2008
4587067811917413562310 ~2006
45870706034587070603111 ~2008
45873253612752395216711 ~2008
4587840143917568028710 ~2006
4587960491917592098310 ~2006
458814877926611262918312 ~2010
4588152011917630402310 ~2006
Home
5.157.210 digits
e-mail
25-11-02