Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
116893703337013622199911 ~2011
116898791392337975827911 ~2010
116900381032338007620711 ~2010
116900559479352044757711 ~2011
116902160992338043219911 ~2010
116914365832338287316711 ~2010
116919662632338393252711 ~2010
116922415312338448306311 ~2010
116922992632338459852711 ~2010
1169259910311692599103112 ~2011
116929489192338589783911 ~2010
116933439232338668784711 ~2010
116938448032338768960711 ~2010
1169391864118710269825712 ~2012
116940097312338801946311 ~2010
1169401306318710420900912 ~2012
116952903112339058062311 ~2010
116956638779356531101711 ~2011
116963733232339274664711 ~2010
116964791032339295820711 ~2010
116977987432339559748711 ~2010
116980042432339600848711 ~2010
116982339832339646796711 ~2010
1169847241328076333791312 ~2012
1169925939118718815025712 ~2012
Exponent Prime Factor Dig. Year
116993111032339862220711 ~2010
116996640592339932811911 ~2010
116997718192339954363911 ~2010
116999845912339996918311 ~2010
117000210712340004214311 ~2010
117002087632340041752711 ~2010
117010526819360842144911 ~2011
117014496592340289931911 ~2010
117017430299361394423311 ~2011
117023111579361848925711 ~2011
117028051432340561028711 ~2010
117029292112340585842311 ~2010
117030884512340617690311 ~2010
117036483112340729662311 ~2010
117039484792340789695911 ~2010
117041937832340838756711 ~2010
117045160912340903218311 ~2010
117047758432340955168711 ~2010
1170499195137455974243312 ~2013
117053367592341067351911 ~2010
117061768737023706123911 ~2011
117062219512341244390311 ~2010
117062557912341251158311 ~2010
117063811192341276223911 ~2010
117068759699365500775311 ~2011
Exponent Prime Factor Dig. Year
117074664112341493282311 ~2010
117079742632341594852711 ~2010
117089509192341790183911 ~2010
117089527192341790543911 ~2010
117090619792341812395911 ~2010
117091143179367291453711 ~2011
117092515312341850306311 ~2010
117093229792341864595911 ~2010
117096780592341935611911 ~2010
117099147592341982951911 ~2010
117101811832342036236711 ~2010
117105705832342114116711 ~2010
117107002192342140043911 ~2010
117124206737027452403911 ~2011
117125232417027513944711 ~2011
117133390912342667818311 ~2010
117134675937028080555911 ~2011
117148676632342973532711 ~2010
117149051992342981039911 ~2010
117160378319372830264911 ~2011
117163597137029815827911 ~2011
117166351792343327035911 ~2010
117166357137029981427911 ~2011
1171755799121091604383912 ~2012
117179960579374396845711 ~2011
Exponent Prime Factor Dig. Year
117183847312343676946311 ~2010
117187376032343747520711 ~2010
117188247232343764944711 ~2010
117189896577031393794311 ~2011
117191701192343834023911 ~2010
117200801032344016020711 ~2010
117203693992344073879911 ~2010
117204970312344099406311 ~2010
117209004479376720357711 ~2011
1172106548330474770255912 ~2012
117211462432344229248711 ~2010
117211615912344232318311 ~2010
117214414192344288283911 ~2010
117221331977033279918311 ~2011
117226605112344532102311 ~2010
117227502112344550042311 ~2010
117234108712344682174311 ~2010
117239616112344792322311 ~2010
117240420232344808404711 ~2010
117241733392344834667911 ~2010
117246639712344932794311 ~2010
117248483217034908992711 ~2011
117253726432345074528711 ~2010
117257392792345147855911 ~2010
1172576040718761216651312 ~2012
Home
4.724.182 digits
e-mail
25-04-13