Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
115223258336913395499911 ~2011
115224375176913462510311 ~2011
115225594792304511895911 ~2010
115238138032304762760711 ~2010
115241502592304830051911 ~2010
1152446899920744044198312 ~2012
115251658432305033168711 ~2010
115251889912305037798311 ~2010
115255507192305110143911 ~2010
115265041679221203333711 ~2011
115265191432305303828711 ~2010
115271225392305424507911 ~2010
115275663112305513262311 ~2010
115279556512305591130311 ~2010
115282555912305651118311 ~2010
115288472992305769459911 ~2010
115290384832305807696711 ~2010
1153004835734590145071112 ~2012
115302875392306057507911 ~2010
115303117312306062346311 ~2010
115303780816918226848711 ~2011
115310797432306215948711 ~2010
115311902992306238059911 ~2010
115318480376919108822311 ~2011
115318762312306375246311 ~2010
Exponent Prime Factor Dig. Year
115319684392306393687911 ~2010
115320922816919255368711 ~2011
115325026499226002119311 ~2011
115328957392306579147911 ~2010
115332357376919941442311 ~2011
115332670192306653403911 ~2010
115336601392306732027911 ~2010
115337008976920220538311 ~2011
115337512192306750243911 ~2010
115339707712306794154311 ~2010
115341070976920464258311 ~2011
115345384199227630735311 ~2011
115349311936920958715911 ~2011
115355259232307105184711 ~2010
115355639392307112787911 ~2010
115355736112307114722311 ~2010
115362138232307242764711 ~2010
115363089232307261784711 ~2010
115365380032307307600711 ~2010
115378440232307568804711 ~2010
115382463112307649262311 ~2010
115397371136923842267911 ~2011
115400864512308017290311 ~2010
1154015593318464249492912 ~2012
115409162032308183240711 ~2010
Exponent Prime Factor Dig. Year
1154130292311541302923112 ~2011
115417926592308358531911 ~2010
115418766832308375336711 ~2010
115419553192308391063911 ~2010
1154212053727701089288912 ~2012
115428312592308566251911 ~2010
115429116232308582324711 ~2010
115429398416925763904711 ~2011
115432293712308645874311 ~2010
115433787832308675756711 ~2010
115437195712308743914311 ~2010
115452279736927136783911 ~2011
115455590992309111819911 ~2010
115466467192309329343911 ~2010
115469461216928167672711 ~2011
115474683232309493664711 ~2010
115475193599238015487311 ~2011
115481621632309632432711 ~2010
1154856796318477708740912 ~2012
115492590832309851816711 ~2010
115493362136929601727911 ~2011
115495749832309914996711 ~2010
115496854192309937083911 ~2010
115498043536929882611911 ~2011
115499352232309987044711 ~2010
Exponent Prime Factor Dig. Year
115500960232310019204711 ~2010
115504969816930298188711 ~2011
115506486112310129722311 ~2010
115507998112310159962311 ~2010
115508234992310164699911 ~2010
115508614499240689159311 ~2011
115517400592310348011911 ~2010
115517717992310354359911 ~2010
115526596912310531938311 ~2010
115529072632310581452711 ~2010
115531387432310627748711 ~2010
115532254192310645083911 ~2010
115537337392310746747911 ~2010
115538421712310768434311 ~2010
115542887032310857740711 ~2010
115550007712311000154311 ~2010
115552378192311047563911 ~2010
115556277712311125554311 ~2010
115559986336933599179911 ~2011
115564312192311286243911 ~2010
115564435799245154863311 ~2011
115568531632311370632711 ~2010
115577877712311557554311 ~2010
115582296592311645931911 ~2010
115584319912311686398311 ~2010
Home
4.724.182 digits
e-mail
25-04-13