Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
74743057375979444589711 ~2010
74743869111494877382311 ~2008
74753337591495066751911 ~2008
74754984231495099684711 ~2008
74758869231495177384711 ~2008
74760157911495203158311 ~2008
74761383111495227662311 ~2008
74763433675981074693711 ~2010
747641185329905647412112 ~2011
74764177191495283543911 ~2008
747662298116448570558312 ~2011
74767925031495358500711 ~2008
74770137591495402751911 ~2008
747720832749349574958312 ~2012
74773060431495461208711 ~2008
74773594315981887544911 ~2010
74777672631495553452711 ~2008
74778283311495565666311 ~2008
74783554311495671086311 ~2008
74783976111495679522311 ~2008
74784063591495681271911 ~2008
74784429917478442991111 ~2010
74786313711495726274311 ~2008
74787945231495758904711 ~2008
74795294391495905887911 ~2008
Exponent Prime Factor Dig. Year
74797834975983826797711 ~2010
74798584431495971688711 ~2008
74802232911496044658311 ~2008
74805421191496108423911 ~2008
74806433815984514704911 ~2010
74808638391496172767911 ~2008
74812122231496242444711 ~2008
74813124111496262482311 ~2008
74815958511496319170311 ~2008
748165879717955981112912 ~2011
74817319311496346386311 ~2008
74817786774489067206311 ~2009
74819008431496380168711 ~2008
74820660715985652856911 ~2010
74825283231496505664711 ~2008
74828869134489732147911 ~2009
74837015814490220948711 ~2009
748381103322451433099112 ~2011
74838605631496772112711 ~2008
74842311711496846234311 ~2008
74847027475987762197711 ~2010
74854169031497083380711 ~2008
74854617711497092354311 ~2008
74860837791497216755911 ~2008
74862091791497241835911 ~2008
Exponent Prime Factor Dig. Year
74862448191497248963911 ~2008
74865429231497308584711 ~2008
74866219791497324395911 ~2008
74866506231497330124711 ~2008
74867489031497349780711 ~2008
74871926214492315572711 ~2009
74872428111497448562311 ~2008
74877427191497548543911 ~2008
74877953511497559070311 ~2008
74881517391497630347911 ~2008
74887381614493242896711 ~2009
748897150719471325918312 ~2011
74897180391497943607911 ~2008
74907972831498159456711 ~2008
749105144337455257215112 ~2012
74913615831498272316711 ~2008
74914925214494895512711 ~2009
74916752875993340229711 ~2010
74919967191498399343911 ~2008
74927155014495629300711 ~2009
74931032031498620640711 ~2008
74935179734496110783911 ~2009
74936526711498730534311 ~2008
749370608319483635815912 ~2011
74941497111498829942311 ~2008
Exponent Prime Factor Dig. Year
74943247911498864958311 ~2008
74943637911498872758311 ~2008
74946645111498932902311 ~2008
74946732711498934654311 ~2008
74949404991498988099911 ~2008
74949482991498989659911 ~2008
74951248311499024966311 ~2008
74957206277495720627111 ~2010
74958724911499174498311 ~2008
74959041831499180836711 ~2008
74960957515996876600911 ~2010
74962614711499252294311 ~2008
749723141955479512500712 ~2012
74977403031499548060711 ~2008
74981016231499620324711 ~2008
74984985317498498531111 ~2010
74985852711499717054311 ~2008
74990347431499806948711 ~2008
74991446511499828930311 ~2008
74991740995999339279311 ~2010
74993196831499863936711 ~2008
74998677591499973551911 ~2008
75001127991500022559911 ~2008
75003086631500061732711 ~2008
75003242814500194568711 ~2009
Home
4.888.230 digits
e-mail
25-06-29