Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
73380711591467614231911 ~2008
73382827974402969678311 ~2009
73386308631467726172711 ~2008
73386975711467739514311 ~2008
73388046734403282803911 ~2009
73389353991467787079911 ~2008
73393873431467877468711 ~2008
73395831374403749882311 ~2009
73397255511467945110311 ~2008
73399737831467994756711 ~2008
73400719431468014388711 ~2008
73402148875872171909711 ~2010
734056307322021689219112 ~2011
73408314711468166294311 ~2008
73412558991468251179911 ~2008
73412891391468257827911 ~2008
73413259191468265183911 ~2008
73413670934404820255911 ~2009
73413802191468276043911 ~2008
73414573911468291478311 ~2008
734147942922024438287112 ~2011
73415850711468317014311 ~2008
73420540191468410803911 ~2008
73424397111468487942311 ~2008
73430375995874430079311 ~2010
Exponent Prime Factor Dig. Year
73430908934405854535911 ~2009
73435380111468707602311 ~2008
73441690431468833808711 ~2008
73441794711468835894311 ~2008
73448467814406908068711 ~2009
73450808391469016167911 ~2008
73451579991469031599911 ~2008
73452755174407165310311 ~2009
73457859134407471547911 ~2009
734591448135260389508912 ~2011
73462763031469255260711 ~2008
73466523111469330462311 ~2008
73470931014408255860711 ~2009
73471584595877726767311 ~2010
73472637711469452754311 ~2008
734729280122041878403112 ~2011
73479096231469581924711 ~2008
73479282711469585654311 ~2008
73480845711469616914311 ~2008
73483113591469662271911 ~2008
734847091722045412751112 ~2011
73488642831469772856711 ~2008
73489907031469798140711 ~2008
73493371791469867435911 ~2008
73493598831469871976711 ~2008
Exponent Prime Factor Dig. Year
73495740591469914811911 ~2008
73497267591469945351911 ~2008
73502852031470057040711 ~2008
73503648831470072976711 ~2008
73503912591470078251911 ~2008
735050649129402025964112 ~2011
73510479231470209584711 ~2008
73510692231470213844711 ~2008
73511503791470230075911 ~2008
73511907711470238154311 ~2008
73512495831470249916711 ~2008
73515218391470304367911 ~2008
73516504791470330095911 ~2008
73520956431470419128711 ~2008
73523826591470476531911 ~2008
73524337934411460275911 ~2009
73524608031470492160711 ~2008
73524810614411488636711 ~2009
735256838317646164119312 ~2011
73530469791470609395911 ~2008
73532401214411944072711 ~2009
73534406631470688132711 ~2008
73539743991470794879911 ~2008
73540763815883261104911 ~2010
73542039111470840782311 ~2008
Exponent Prime Factor Dig. Year
73543532391470870647911 ~2008
73544927031470898540711 ~2008
73545217014412713020711 ~2009
73551118911471022378311 ~2008
73556269191471125383911 ~2008
73556452431471129048711 ~2008
73560700191471214003911 ~2008
73562882391471257647911 ~2008
73571206431471424128711 ~2008
73571517591471430351911 ~2008
73576455111471529102311 ~2008
73579405431471588108711 ~2008
73579593414414775604711 ~2009
73580672477358067247111 ~2010
73585324311471706486311 ~2008
73588421031471768420711 ~2008
73591444911471828898311 ~2008
73592257075887380565711 ~2010
73592516174415550970311 ~2009
73597382031471947640711 ~2008
73600842231472016844711 ~2008
73610936991472218739911 ~2008
73615364391472307287911 ~2008
73617119631472342392711 ~2008
736214659317669151823312 ~2011
Home
4.888.230 digits
e-mail
25-06-29