Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
104712882598377030607311 ~2011
104714488936282869335911 ~2010
104714810816282888648711 ~2010
104724294592094485891911 ~2009
1047278590923040128999912 ~2012
104727996112094559922311 ~2009
1047319293110473192931112 ~2011
104733839392094676787911 ~2009
104733921832094678436711 ~2009
104739645616284378736711 ~2010
104739875936284392555911 ~2010
104743961392094879227911 ~2009
1047457939910474579399112 ~2011
104750034712095000694311 ~2009
104756451112095129022311 ~2009
104786546392095730927911 ~2009
104789068912095781378311 ~2009
104794150912095883018311 ~2009
1047979962116767679393712 ~2011
104802243615992...89619914 2025
104802952192096059043911 ~2009
104805688312096113766311 ~2009
104806725112096134502311 ~2009
104808374632096167492711 ~2009
104808636112096172722311 ~2009
Exponent Prime Factor Dig. Year
104808869218384709536911 ~2011
104809483432096189668711 ~2009
104812878712096257574311 ~2009
104820783598385662687311 ~2011
104821966016289317960711 ~2010
104822848312096456966311 ~2009
104826308032096526160711 ~2009
104833355632096667112711 ~2009
104837513576290250814311 ~2010
104852017912097040358311 ~2009
104853958912097079178311 ~2009
104861838712097236774311 ~2009
104865716632097314332711 ~2009
104873020432097460408711 ~2009
104874681976292480918311 ~2010
104884212592097684251911 ~2009
104885370112097707402311 ~2009
104890438912097808778311 ~2009
104893935592097878711911 ~2009
104897668018391813440911 ~2011
1049049687110490496871112 ~2011
104906203192098124063911 ~2009
104908835818392706864911 ~2011
1049135536310491355363112 ~2011
104914443176294866590311 ~2010
Exponent Prime Factor Dig. Year
104918414032098368280711 ~2009
104920207192098404143911 ~2009
104920273792098405475911 ~2009
104923299232098465984711 ~2009
104924589232098491784711 ~2009
104933022232098660444711 ~2009
104933641816296018508711 ~2010
104933650792098673015911 ~2009
104934105616296046336711 ~2010
1049400017333580800553712 ~2012
104940014936296400895911 ~2010
104941951432098839028711 ~2009
104947055032098941100711 ~2009
104949830216296989812711 ~2010
104955041632099100832711 ~2009
104957887912099157758311 ~2009
104961314632099226292711 ~2009
104963648632099272972711 ~2009
104969547712099390954311 ~2009
104969943832099398876711 ~2009
104970277976298216678311 ~2010
1049734537910497345379112 ~2011
104981016118398481288911 ~2011
1049863387731495901631112 ~2012
104999151832099983036711 ~2009
Exponent Prime Factor Dig. Year
105017513392100350267911 ~2009
105018286432100365728711 ~2009
105022645816301358748711 ~2010
105025124576301507474311 ~2010
105025228432100504568711 ~2009
105025573192100511463911 ~2009
105027690832100553816711 ~2009
105035464912100709298311 ~2009
105036027832100720556711 ~2009
1050376629116806026065712 ~2011
105040623016302437380711 ~2010
105043543192100870863911 ~2009
1050502953748323135870312 ~2013
105052444792101048895911 ~2009
105058218112101164362311 ~2009
105062219416303733164711 ~2010
105067135312101342706311 ~2009
105069228832101384576711 ~2009
105071146192101422923911 ~2009
105075185216304511112711 ~2010
1050772359110507723591112 ~2011
105078239512101564790311 ~2009
105079588432101591768711 ~2009
105080455432101609108711 ~2009
105080492632101609852711 ~2009
Home
4.724.182 digits
e-mail
25-04-13