Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
54928025991098560519911 ~2007
54930023694394401895311 ~2009
549304602125268011696712 ~2010
54930972711098619454311 ~2007
54931726733295903603911 ~2008
54934060911098681218311 ~2007
54935480178789676827311 ~2009
54935574111098711482311 ~2007
54936873591098737471911 ~2007
54941553231098831064711 ~2007
54942279231098845584711 ~2007
54943564311098871286311 ~2007
54943953111098879062311 ~2007
54946205333296772319911 ~2008
54948112911098962258311 ~2007
54951381111099027622311 ~2007
54954616515495461651111 ~2009
54958591995495859199111 ~2009
54960392337694454926311 ~2009
54967193391099343867911 ~2007
54972194933298331695911 ~2008
54972245391099444907911 ~2007
54974347911099486958311 ~2007
54974537511099490750311 ~2007
54976188831099523776711 ~2007
Exponent Prime Factor Dig. Year
54977111577696795619911 ~2009
54977546813298652808711 ~2008
54978784431099575688711 ~2007
54983567391099671347911 ~2007
54985374591099707491911 ~2007
54989193111099783862311 ~2007
54989204031099784080711 ~2007
54990282591099805651911 ~2007
54990958791099819175911 ~2007
54995390994399631279311 ~2009
55000508333300030499911 ~2008
55002074511100041490311 ~2007
55004507511100090150311 ~2007
55004522391100090447911 ~2007
55006197591100123951911 ~2007
55007214591100144291911 ~2007
55007565711100151314311 ~2007
55009301533300558091911 ~2008
55011379311100227586311 ~2007
55012862235501286223111 ~2009
55013047973300782878311 ~2008
55015615311100312306311 ~2007
55016149311100322986311 ~2007
55017622911100352458311 ~2007
55017774231100355484711 ~2007
Exponent Prime Factor Dig. Year
55018435911100368718311 ~2007
55021554537703017634311 ~2009
55030118631100602372711 ~2007
55030248831100604976711 ~2007
55030707591100614151911 ~2007
55033206774402656541711 ~2009
55035027831100700556711 ~2007
55035176391100703527911 ~2007
55036543191100730863911 ~2007
55040970831100819416711 ~2007
55041105973302466358311 ~2008
550415071123117432986312 ~2010
55041923631100838472711 ~2007
55042086591100841731911 ~2007
55043908333302634499911 ~2008
55049480511100989610311 ~2007
55052773878808443819311 ~2009
55058975573303538534311 ~2008
55068153315506815331111 ~2009
55068645231101372904711 ~2007
55069223813304153428711 ~2008
55072822999913108138311 ~2009
55074480174405958413711 ~2009
55075296173304517770311 ~2008
550779797313218715135312 ~2010
Exponent Prime Factor Dig. Year
55079943111101598862311 ~2007
55083086991101661739911 ~2007
55088651631101773032711 ~2007
55088894333305333659911 ~2008
55091318391101826367911 ~2007
55092747831101854956711 ~2007
55097965311101959306311 ~2007
55098105711101962114311 ~2007
55100084031102001680711 ~2007
55100782573306046954311 ~2008
55102503591102050071911 ~2007
551030714913224737157712 ~2010
55106737674408539013711 ~2009
55106930031102138600711 ~2007
55112142111102242842311 ~2007
55112961594409036927311 ~2009
55114075191102281503911 ~2007
55114851591102297031911 ~2007
55117654311102353086311 ~2007
55117862391102357247911 ~2007
55120552911102411058311 ~2007
55120571511102411430311 ~2007
55121149311102422986311 ~2007
55121335311102426706311 ~2007
55123121631102462432711 ~2007
Home
4.903.097 digits
e-mail
25-07-08