Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
53916699111078333982311 ~2007
53917833479705210024711 ~2009
53918135991078362719911 ~2007
53920169991078403399911 ~2007
53921725613235303536711 ~2008
53922524031078450480711 ~2007
53926206831078524136711 ~2007
53928137173235688230311 ~2008
53929060638628649700911 ~2009
53929317111078586342311 ~2007
53930520973235831258311 ~2008
53931646911078632938311 ~2007
53933350933236001055911 ~2008
53938679031078773580711 ~2007
53939210631078784212711 ~2007
53940084231078801684711 ~2007
53940257511078805150311 ~2007
53943691431078873828711 ~2007
53944058511078881170311 ~2007
53945033214315602656911 ~2008
53945220177552330823911 ~2009
53946661311078933226311 ~2007
53949794511078995890311 ~2007
53952044991079040899911 ~2007
53952570133237154207911 ~2008
Exponent Prime Factor Dig. Year
53954844591079096891911 ~2007
53958199911079163998311 ~2007
53958268791079165375911 ~2007
53958381591079167631911 ~2007
53958573591079171471911 ~2007
53959073511079181470311 ~2007
53959379991079187599911 ~2007
53962645911079252918311 ~2007
53963849631079276992711 ~2007
53965655991079313119911 ~2007
53970121914317609752911 ~2008
53972098431079441968711 ~2007
53972589897556162584711 ~2009
53975181831079503636711 ~2007
539769383922670314123912 ~2010
53978335431079566708711 ~2007
53980593111079611862311 ~2007
53981788333238907299911 ~2008
53983850991079677019911 ~2007
53988123111079762462311 ~2007
53989393911079787878311 ~2007
53989945431079798908711 ~2007
53992552191079851043911 ~2007
53992885911079857718311 ~2007
53993410191079868203911 ~2007
Exponent Prime Factor Dig. Year
53994463191079889263911 ~2007
53997037911079940758311 ~2007
53998405311079968106311 ~2007
54003258831080065176711 ~2007
54003455391080069107911 ~2007
54005935431080118708711 ~2007
54012063831080241276711 ~2007
54015517191080310343911 ~2007
54016739391080334787911 ~2007
54018213711080364274311 ~2007
54018553791080371075911 ~2007
54020058111080401162311 ~2007
54021971031080439420711 ~2007
54025676719724621807911 ~2009
54026405391080528107911 ~2007
54029229711080584594311 ~2007
54032655831080653116711 ~2007
54034108791080682175911 ~2007
54039367431080787348711 ~2007
54039871311080797426311 ~2007
54040049533242402971911 ~2008
54040837191080816743911 ~2007
54042194115404219411111 ~2009
540446623730265010927312 ~2011
54044755911080895118311 ~2007
Exponent Prime Factor Dig. Year
540479938117295358019312 ~2010
54049445697566922396711 ~2009
54049574994323965999311 ~2008
54049585791080991715911 ~2007
540514736925944707371312 ~2010
54051738831081034776711 ~2007
540544531720540692204712 ~2010
540568414911892505127912 ~2010
54057179031081143580711 ~2007
54059628533243577711911 ~2008
54062104578649936731311 ~2009
54062406831081248136711 ~2007
54063673911081273478311 ~2007
54064679391081293587911 ~2007
54065263733243915823911 ~2008
54067665231081353304711 ~2007
54068422373244105342311 ~2008
54069011511081380230311 ~2007
54069013191081380263911 ~2007
54070203315407020331111 ~2009
54070758133244245487911 ~2008
54070765791081415315911 ~2007
54070896591081417931911 ~2007
54073939191081478783911 ~2007
540747742947585801375312 ~2011
Home
4.903.097 digits
e-mail
25-07-08