Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3158052851631610570310 ~2005
315807136341054927719112 ~2010
3158172911631634582310 ~2005
3158444483631688896710 ~2005
3158469599631693919910 ~2005
3158744843631748968710 ~2005
3158805911631761182310 ~2005
31589105411895346324711 ~2006
3158937779631787555910 ~2005
3158993951631798790310 ~2005
31590100971895406058311 ~2006
3159514223631902844710 ~2005
3159533843631906768710 ~2005
3159541823631908364710 ~2005
3159622523631924504710 ~2005
3159646559631929311910 ~2005
3159669323631933864710 ~2005
3159747203631949440710 ~2005
31599634972527970797711 ~2007
31600108372528008669711 ~2007
3160109831632021966310 ~2005
31601696715056271473711 ~2007
3160608383632121676710 ~2005
3160739663632147932710 ~2005
31607498115057199697711 ~2007
Exponent Prime Factor Digits Year
31607912411896474744711 ~2006
3161030819632206163910 ~2005
31610379171896622750311 ~2006
31613849211896830952711 ~2006
3161441219632288243910 ~2005
3161606711632321342310 ~2005
31616766971897006018311 ~2006
3161794271632358854310 ~2005
31619863611897191816711 ~2006
31620325672529626053711 ~2007
3162053579632410715910 ~2005
3162070343632414068710 ~2005
3162166211632433242310 ~2005
3162573203632514640710 ~2005
31625743971897544638311 ~2006
31625919611897555176711 ~2006
3162619571632523914310 ~2005
3162676631632535326310 ~2005
31627913812530233104911 ~2007
3162879683632575936710 ~2005
31628944371897736662311 ~2006
3162897431632579486310 ~2005
3162980063632596012710 ~2005
3163120319632624063910 ~2005
31631834771897910086311 ~2006
Exponent Prime Factor Digits Year
31631933331897915999911 ~2006
3163240043632648008710 ~2005
3163433459632686691910 ~2005
3163436291632687258310 ~2005
3163438391632687678310 ~2005
3163720223632744044710 ~2005
3163794563632758912710 ~2005
3163831091632766218310 ~2005
3163914119632782823910 ~2005
31639351335062296212911 ~2007
31639778812531182304911 ~2007
31642381371898542882311 ~2006
3164592023632918404710 ~2005
31647526312531802104911 ~2007
3164806679632961335910 ~2005
3164860883632972176710 ~2005
3164888483632977696710 ~2005
3164895731632979146310 ~2005
3164897999632979599910 ~2005
316504621146209674680712 ~2010
3165053711633010742310 ~2005
31651027012532082160911 ~2007
3165156503633031300710 ~2005
3165185099633037019910 ~2005
3165340103633068020710 ~2005
Exponent Prime Factor Digits Year
3165413123633082624710 ~2005
3165422531633084506310 ~2005
3165596111633119222310 ~2005
3165746891633149378310 ~2005
3165788999633157799910 ~2005
3165830819633166163910 ~2005
3165872819633174563910 ~2005
3165937331633187466310 ~2005
3165971219633194243910 ~2005
31661043171899662590311 ~2006
3166122923633224584710 ~2005
3166180271633236054310 ~2005
31663185915066109745711 ~2007
31664703313166470331111 ~2007
31665637331899938239911 ~2006
31666095313166609531111 ~2007
31667228771900033726311 ~2006
31667383011900042980711 ~2006
31668134771900088086311 ~2006
3166825979633365195910 ~2005
3166850891633370178310 ~2005
3166853303633370660710 ~2005
3167061479633412295910 ~2005
3167186219633437243910 ~2005
31672610175067617627311 ~2007
Home
5.157.210 digits
e-mail
25-11-02