Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3001067351600213470310 ~2005
3001098059600219611910 ~2005
3001161659600232331910 ~2005
30014389971800863398311 ~2006
30014629072401170325711 ~2007
3001510439600302087910 ~2005
30015225611800913536711 ~2006
30015751214802520193711 ~2007
3001583831600316766310 ~2005
30015979611800958776711 ~2006
3001636139600327227910 ~2005
30016414937203939583311 ~2008
30016706699005012007111 ~2008
3001731443600346288710 ~2005
3001908863600381772710 ~2005
30020506972401640557711 ~2007
3002062319600412463910 ~2005
300215137912008605516112 ~2008
30021891112401751288911 ~2007
30023096571801385794311 ~2006
30023269971801396198311 ~2006
3002421839600484367910 ~2005
30024512419007353723111 ~2008
3002747831600549566310 ~2005
3002796323600559264710 ~2005
Exponent Prime Factor Digits Year
30028392611801703556711 ~2006
3002876843600575368710 ~2005
30030050771801803046311 ~2006
3003019319600603863910 ~2005
3003246899600649379910 ~2005
3003288311600657662310 ~2005
30033021531801981291911 ~2006
30033077114805292337711 ~2007
3003553583600710716710 ~2005
30035909512402872760911 ~2007
3003597959600719591910 ~2005
3003788171600757634310 ~2005
3003828143600765628710 ~2005
30039072112403125768911 ~2007
3004056299600811259910 ~2005
3004100639600820127910 ~2005
30041419571802485174311 ~2006
3004202111600840422310 ~2005
3004430171600886034310 ~2005
30045491872403639349711 ~2007
3004651151600930230310 ~2005
3004718963600943792710 ~2005
30047610411802856624711 ~2006
30047684694206675856711 ~2007
30047821974206695075911 ~2007
Exponent Prime Factor Digits Year
3004837571600967514310 ~2005
3004896311600979262310 ~2005
3004896623600979324710 ~2005
3004950779600990155910 ~2005
3005068103601013620710 ~2005
30052405971803144358311 ~2006
3005280203601056040710 ~2005
30052829572404226365711 ~2007
3005288519601057703910 ~2005
30055502715409990487911 ~2007
3005559611601111922310 ~2005
3005678519601135703910 ~2005
30057030112404562408911 ~2007
3005708243601141648710 ~2005
30057508574809201371311 ~2007
3005777279601155455910 ~2005
30057846892404627751311 ~2007
30058057972404644637711 ~2007
3005852483601170496710 ~2005
30058908731803534523911 ~2006
3005912243601182448710 ~2005
30059451771803567106311 ~2006
30059600934208344130311 ~2007
3006057779601211555910 ~2005
3006125183601225036710 ~2005
Exponent Prime Factor Digits Year
3006344219601268843910 ~2005
3006354359601270871910 ~2005
3006649403601329880710 ~2005
30066650931803999055911 ~2006
30067256536614796436711 ~2008
3006775283601355056710 ~2005
3006805751601361150310 ~2005
3006807143601361428710 ~2005
3006923519601384703910 ~2005
30069470714811115313711 ~2007
30070134611804208076711 ~2006
3007039583601407916710 ~2005
3007094063601418812710 ~2005
30072581811804354908711 ~2006
3007288103601457620710 ~2005
30073023592405841887311 ~2007
30073607572405888605711 ~2007
3007442591601488518310 ~2005
3007486271601497254310 ~2005
3007514039601502807910 ~2005
30075159371804509562311 ~2006
3007518719601503743910 ~2005
3007721543601544308710 ~2005
3007857323601571464710 ~2005
30079545412406363632911 ~2007
Home
5.157.210 digits
e-mail
25-11-02