Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3643303211728660642310 ~2006
3643430891728686178310 ~2006
36434963175829594107311 ~2008
3643543619728708723910 ~2006
3643584071728716814310 ~2006
3643733111728746622310 ~2006
36437434072914994725711 ~2007
36437678716558782167911 ~2008
3643908083728781616710 ~2006
364395856110931875683112 ~2009
36442032915830725265711 ~2008
3644222303728844460710 ~2006
36443104972186586298311 ~2007
3644444399728888879910 ~2006
3644457143728891428710 ~2006
3644507831728901566310 ~2006
3644543879728908775910 ~2006
3644674283728934856710 ~2006
3644729591728945918310 ~2006
3644883659728976731910 ~2006
3644923559728984711910 ~2006
36449661532186979691911 ~2007
36449844772915987581711 ~2007
3645158663729031732710 ~2006
36451930932187115855911 ~2007
Exponent Prime Factor Digits Year
3645223163729044632710 ~2006
3645334139729066827910 ~2006
3645472403729094480710 ~2006
3645475583729095116710 ~2006
3645508991729101798310 ~2006
3645632603729126520710 ~2006
36456724633645672463111 ~2007
36458048092916643847311 ~2007
3646130639729226127910 ~2006
36462032512916962600911 ~2007
3646362911729272582310 ~2006
364647673111668725539312 ~2009
3646599431729319886310 ~2006
3646618571729323714310 ~2006
3646821719729364343910 ~2006
3646862951729372590310 ~2006
3646865531729373106310 ~2006
3646984571729396914310 ~2006
3647074103729414820710 ~2006
3647510459729502091910 ~2006
36475415596565574806311 ~2008
3647548739729509747910 ~2006
3647594903729518980710 ~2006
3647700971729540194310 ~2006
3647770991729554198310 ~2006
Exponent Prime Factor Digits Year
3647923991729584798310 ~2006
36480608172188836490311 ~2007
3648106139729621227910 ~2006
3648188399729637679910 ~2006
3648249383729649876710 ~2006
3648280451729656090310 ~2006
36483109072918648725711 ~2007
3648389603729677920710 ~2006
3648435839729687167910 ~2006
3648485363729697072710 ~2006
36485744512918859560911 ~2007
3648603239729720647910 ~2006
364886610732839794963112 ~2010
3648966719729793343910 ~2006
3649019963729803992710 ~2006
3649082483729816496710 ~2006
3649093379729818675910 ~2006
3649263083729852616710 ~2006
3649310459729862091910 ~2006
36493852312919508184911 ~2007
3649467599729893519910 ~2006
3649672979729934595910 ~2006
36496946772189816806311 ~2007
36497823292919825863311 ~2007
364998922122629933170312 ~2009
Exponent Prime Factor Digits Year
3650261519730052303910 ~2006
36502997812920239824911 ~2007
36503572612190214356711 ~2007
3650375051730075010310 ~2006
36507054532190423271911 ~2007
36509322772190559366311 ~2007
3650937971730187594310 ~2006
3651122483730224496710 ~2006
36511833313651183331111 ~2007
3651184391730236878310 ~2006
3651496151730299230310 ~2006
3651575099730315019910 ~2006
3651577379730315475910 ~2006
3651603551730320710310 ~2006
3651711383730342276710 ~2006
3651872039730374407910 ~2006
36518832112921506568911 ~2007
36519215172191152910311 ~2007
3652170611730434122310 ~2006
3652192811730438562310 ~2006
36522548775843607803311 ~2008
3652532879730506575910 ~2006
3653026511730605302310 ~2006
36532268532191936111911 ~2007
3653233019730646603910 ~2006
Home
5.037.460 digits
e-mail
25-09-07