Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
70013487711400269754311 ~2008
70014787791400295755911 ~2008
70016635795601330863311 ~2009
70021198791400423975911 ~2008
70025196774201511806311 ~2009
70030216311400604326311 ~2008
70033460875602676869711 ~2009
70036157631400723152711 ~2008
70041216231400824324711 ~2008
70041961311400839226311 ~2008
70042641534202558491911 ~2009
700435277912607835002312 ~2010
70046367831400927356711 ~2008
70048190991400963819911 ~2008
70048729431400974588711 ~2008
70049947791400998955911 ~2008
700499779337826988082312 ~2011
70054771311401095426311 ~2008
70056181615604494528911 ~2009
70058432031401168640711 ~2008
70059992391401199847911 ~2008
70060990134203659407911 ~2009
70061315511401226310311 ~2008
70061861991401237239911 ~2008
70062291415604983312911 ~2009
Exponent Prime Factor Dig. Year
70062504831401250096711 ~2008
70064805711401296114311 ~2008
70065227031401304540711 ~2008
70070350375605628029711 ~2009
70075086711401501734311 ~2008
70078584711401571694311 ~2008
70081058031401621160711 ~2008
70086385134205183107911 ~2009
700876897315419291740712 ~2010
70088826797008882679111 ~2010
70089331315607146504911 ~2009
70090449231401808984711 ~2008
70091017615607281408911 ~2009
70092058311401841166311 ~2008
70092262911401845258311 ~2008
700938343923831903692712 ~2011
70100334475608026757711 ~2009
70101722934206103375911 ~2009
70103765391402075307911 ~2008
70104192711402083854311 ~2008
70106211174206372670311 ~2009
70106475415608518032911 ~2009
70106929431402138588711 ~2008
70107937911402158758311 ~2008
70111572711402231454311 ~2008
Exponent Prime Factor Dig. Year
70116084197011608419111 ~2010
70116484614206989076711 ~2009
70118978031402379560711 ~2008
70122368774207342126311 ~2009
70123153075609852245711 ~2009
70132904631402658092711 ~2008
70138141791402762835911 ~2008
70151614311403032286311 ~2008
70152555197015255519111 ~2010
70156362231403127244711 ~2008
70159336974209560218311 ~2009
70159840134209590407911 ~2009
70162663431403253268711 ~2008
70163737191403274743911 ~2008
70167159895613372791311 ~2009
70170513111403410262311 ~2008
70174150191403483003911 ~2008
70174573791403491475911 ~2008
70177512591403550251911 ~2008
70177770231403555404711 ~2008
70177909379824907311911 ~2010
70177980797017798079111 ~2010
70180296591403605931911 ~2008
70181398615614511888911 ~2009
70182293534210937611911 ~2009
Exponent Prime Factor Dig. Year
70187459717018745971111 ~2010
70188256311403765126311 ~2008
70191800815615344064911 ~2009
70192461831403849236711 ~2008
70193062431403861248711 ~2008
70194778911403895578311 ~2008
70204022875616321829711 ~2009
70205296734212317803911 ~2009
70207504791404150095911 ~2008
70209932334212595939911 ~2009
70212798797021279879111 ~2010
70213377231404267544711 ~2008
702166050716851985216912 ~2011
70219822075617585765711 ~2009
70221129917022112991111 ~2010
70221667431404433348711 ~2008
70224852591404497051911 ~2008
70227364911404547298311 ~2008
702274992716854599824912 ~2011
70231455231404629104711 ~2008
70232808414213968504711 ~2009
70233851991404677039911 ~2008
70235432031404708640711 ~2008
70236475311404729506311 ~2008
70237919774214275186311 ~2009
Home
4.724.182 digits
e-mail
25-04-13