Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4601292023920258404710 ~2006
46015353532760921211911 ~2008
4602456851920491370310 ~2006
4602469523920493904710 ~2006
460249587155229950452112 ~2011
460256471914728207100912 ~2009
4602856619920571323910 ~2006
4602900143920580028710 ~2006
4602925391920585078310 ~2006
4603113323920622664710 ~2006
460324038135905274971912 ~2010
4603327691920665538310 ~2006
4603442351920688470310 ~2006
4603603139920720627910 ~2006
460396256917495057762312 ~2010
46039772993683181839311 ~2008
46042048972762522938311 ~2008
4604315783920863156710 ~2006
4604465171920893034310 ~2006
460485658319340397648712 ~2010
4605008483921001696710 ~2006
4605031559921006311910 ~2006
4605212879921042575910 ~2006
4605319331921063866310 ~2006
4605614543921122908710 ~2006
Exponent Prime Factor Digits Year
4605719603921143920710 ~2006
46059067572763544054311 ~2008
4606040039921208007910 ~2006
4606077923921215584710 ~2006
4606374359921274871910 ~2006
4606539803921307960710 ~2006
4606708523921341704710 ~2006
46067085677370733707311 ~2009
4606812263921362452710 ~2006
4606832579921366515910 ~2006
46074141293685931303311 ~2008
4607514251921502850310 ~2006
4607554823921510964710 ~2006
4607696771921539354310 ~2006
4607801279921560255910 ~2006
4608119591921623918310 ~2006
46082229914608222991111 ~2008
4608229523921645904710 ~2006
4608444383921688876710 ~2006
46085225537373636084911 ~2009
4608559619921711923910 ~2006
4608592283921718456710 ~2006
460883872318435354892112 ~2010
46089007132765340427911 ~2008
4609018871921803774310 ~2006
Exponent Prime Factor Digits Year
46094537332765672239911 ~2008
4609666751921933350310 ~2006
4609753331921950666310 ~2006
46098726678297770800711 ~2009
4609926383921985276710 ~2006
4610143199922028639910 ~2006
4610330771922066154310 ~2006
4610520251922104050310 ~2006
4610532791922106558310 ~2006
4610688539922137707910 ~2006
4610846651922169330310 ~2006
4611065183922213036710 ~2006
46113367332766802039911 ~2008
4611513299922302659910 ~2006
4611523151922304630310 ~2006
4611700283922340056710 ~2006
4611703319922340663910 ~2006
4611758171922351634310 ~2006
46119170412767150224711 ~2008
4612180763922436152710 ~2006
4612297031922459406310 ~2006
4612458299922491659910 ~2006
46124787077379965931311 ~2009
4612647563922529512710 ~2006
4612868783922573756710 ~2006
Exponent Prime Factor Digits Year
4612880423922576084710 ~2006
4613308163922661632710 ~2006
4613444999922688999910 ~2006
4613466659922693331910 ~2006
4613634491922726898310 ~2006
46136840212768210412711 ~2008
4613781383922756276710 ~2006
4613937299922787459910 ~2006
46139455073691156405711 ~2008
46139611732768376703911 ~2008
46141999212768519952711 ~2008
46143464237382954276911 ~2009
4614396659922879331910 ~2006
4614800819922960163910 ~2006
4614822791922964558310 ~2006
4614830579922966115910 ~2006
46153759793692300783311 ~2008
46154248332769254899911 ~2008
4615560479923112095910 ~2006
4615615271923123054310 ~2006
4615771619923154323910 ~2006
4615885199923177039910 ~2006
4615938791923187758310 ~2006
46159609572769576574311 ~2008
4616216471923243294310 ~2006
Home
4.903.097 digits
e-mail
25-07-08