Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
43907790317025246449711 ~2009
43911468612634688116711 ~2007
43912538093513003047311 ~2008
4391258351878251670310 ~2006
4391299499878259899910 ~2006
4391309291878261858310 ~2006
4391322779878264555910 ~2006
43913316473513065317711 ~2008
43919772012635186320711 ~2007
4392071819878414363910 ~2006
4392448031878489606310 ~2006
4392486023878497204710 ~2006
4392486179878497235910 ~2006
4392504071878500814310 ~2006
439263586710542326080912 ~2009
43928234412635694064711 ~2007
4392955043878591008710 ~2006
43929608573514368685711 ~2008
43931787372635907242311 ~2007
4393284911878656982310 ~2006
43936832117908629779911 ~2009
4393720931878744186310 ~2006
4393724651878744930310 ~2006
4393736723878747344710 ~2006
4393743743878748748710 ~2006
Exponent Prime Factor Digits Year
4393785503878757100710 ~2006
4393879859878775971910 ~2006
43946949113515755928911 ~2008
4394894951878978990310 ~2006
4394901503878980300710 ~2006
4395030863879006172710 ~2006
4395391223879078244710 ~2006
4395646571879129314310 ~2006
4396065851879213170310 ~2006
4396115723879223144710 ~2006
43962042896154686004711 ~2008
43964931132637895867911 ~2007
4396614779879322955910 ~2006
4396707851879341570310 ~2006
4396794491879358898310 ~2006
4396879139879375827910 ~2006
4396925171879385034310 ~2006
4396928303879385660710 ~2006
43969294613517543568911 ~2008
4397081291879416258310 ~2006
43973254732638395283911 ~2007
4397502563879500512710 ~2006
4397536679879507335910 ~2006
43976919532638615171911 ~2007
4397967419879593483910 ~2006
Exponent Prime Factor Digits Year
4398131879879626375910 ~2006
4398175511879635102310 ~2006
4398396419879679283910 ~2006
4398634979879726995910 ~2006
4398652091879730418310 ~2006
4398687791879737558310 ~2006
43987164012639229840711 ~2007
4399262531879852506310 ~2006
43993679234399367923111 ~2008
4399604171879920834310 ~2006
43998181394399818139111 ~2008
4399907423879981484710 ~2006
4400030039880006007910 ~2006
440028259710560678232912 ~2009
4400489843880097968710 ~2006
44005083532640305011911 ~2007
440072546332565368426312 ~2010
4400980439880196087910 ~2006
440104455125526058395912 ~2010
4401209363880241872710 ~2006
44014032972640841978311 ~2007
44015426172640925570311 ~2007
4401631319880326263910 ~2006
44018930572641135834311 ~2007
4401926999880385399910 ~2006
Exponent Prime Factor Digits Year
4401945059880389011910 ~2006
44020507973521640637711 ~2008
4402160051880432010310 ~2006
44028725532641723531911 ~2007
4403179619880635923910 ~2006
4403219363880643872710 ~2006
4403375519880675103910 ~2006
4403609159880721831910 ~2006
44038483572642309014311 ~2007
4403868851880773770310 ~2006
44038700412642322024711 ~2007
4403948603880789720710 ~2006
440398045910569553101712 ~2009
44043664132642619847911 ~2007
4404558839880911767910 ~2006
4404847103880969420710 ~2006
44049582532642974951911 ~2007
4405093523881018704710 ~2006
4405114751881022950310 ~2006
4405132139881026427910 ~2006
4405196639881039327910 ~2006
4405243103881048620710 ~2006
44052524932643151495911 ~2007
4405615583881123116710 ~2006
440572602120266339696712 ~2010
Home
4.903.097 digits
e-mail
25-07-08