Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
395917258710293848726312 ~2009
39591871013167349680911 ~2007
3959330579791866115910 ~2006
3959578079791915615910 ~2006
39596274077127329332711 ~2008
39596320932375779255911 ~2007
3959747399791949479910 ~2006
3959805719791961143910 ~2006
3960034439792006887910 ~2006
3960303383792060676710 ~2006
396031828130890482591912 ~2010
39603819772376229186311 ~2007
3960519863792103972710 ~2006
3960667019792133403910 ~2006
3960688943792137788710 ~2006
39613550597130439106311 ~2008
3961442879792288575910 ~2006
39614630877130633556711 ~2008
3961673003792334600710 ~2006
39616868532377012111911 ~2007
3961773383792354676710 ~2006
3961783211792356642310 ~2006
3961801139792360227910 ~2006
3961828679792365735910 ~2006
39618655973169492477711 ~2007
Exponent Prime Factor Digits Year
3961933259792386651910 ~2006
3962039423792407884710 ~2006
3962134139792426827910 ~2006
39622143313962214331111 ~2008
396226465337245287738312 ~2010
3962415959792483191910 ~2006
3962548679792509735910 ~2006
3962597291792519458310 ~2006
39626566793170125343311 ~2007
3962789639792557927910 ~2006
39630899513170471960911 ~2007
3963216671792643334310 ~2006
3963338663792667732710 ~2006
3963660359792732071910 ~2006
3963749519792749903910 ~2006
3963817043792763408710 ~2006
39638454412378307264711 ~2007
3963904751792780950310 ~2006
39643695972378621758311 ~2007
39644067793964406779111 ~2008
39649061572378943694311 ~2007
3964918103792983620710 ~2006
39649474732378968483911 ~2007
3965059391793011878310 ~2006
3965115083793023016710 ~2006
Exponent Prime Factor Digits Year
3965388851793077770310 ~2006
3965412023793082404710 ~2006
3965437439793087487910 ~2006
3965492579793098515910 ~2006
3965523899793104779910 ~2006
39656038612379362316711 ~2007
396569656972968816869712 ~2011
3965866763793173352710 ~2006
39662476999518994477711 ~2009
396633802921418225356712 ~2009
3966338423793267684710 ~2006
39663674873173093989711 ~2007
3966559559793311911910 ~2006
3966645731793329146310 ~2006
39670331572380219894311 ~2007
3967083839793416767910 ~2006
3967356671793471334310 ~2006
3967399511793479902310 ~2006
3967406279793481255910 ~2006
3967598759793519751910 ~2006
39676680172380600810311 ~2007
39676838695554757416711 ~2008
39677510093174200807311 ~2007
3967799939793559987910 ~2006
3967838051793567610310 ~2006
Exponent Prime Factor Digits Year
39680972993174477839311 ~2007
39683697193968369719111 ~2008
3968415023793683004710 ~2006
3968572631793714526310 ~2006
3968707163793741432710 ~2006
3968723939793744787910 ~2006
3968758331793751666310 ~2006
3968803991793760798310 ~2006
3968829323793765864710 ~2006
39688686412381321184711 ~2007
39689264176350282267311 ~2008
3968950319793790063910 ~2006
3969188843793837768710 ~2006
39692476732381548603911 ~2007
3969331739793866347910 ~2006
3969369251793873850310 ~2006
396939897721434754475912 ~2009
396945671916671718219912 ~2009
3969484763793896952710 ~2006
3969655103793931020710 ~2006
3969663779793932755910 ~2006
3969854711793970942310 ~2006
3969925031793985006310 ~2006
39699678293175974263311 ~2007
39700086313970008631111 ~2008
Home
4.903.097 digits
e-mail
25-07-08