Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
29254113978776234191111 ~2008
2925412271585082454310 ~2005
2925550091585110018310 ~2005
2925595103585119020710 ~2005
29256609792925660979111 ~2007
2925661691585132338310 ~2005
29256793312340543464911 ~2006
29257321972340585757711 ~2006
2925756419585151283910 ~2005
29262403912340992312911 ~2006
2926246283585249256710 ~2005
29262820275267307648711 ~2007
29264092312341127384911 ~2006
2926532699585306539910 ~2005
2926676183585335236710 ~2005
2926691699585338339910 ~2005
2926998731585399746310 ~2005
2927102879585420575910 ~2005
2927223371585444674310 ~2005
29273874534098342434311 ~2007
2927496359585499271910 ~2005
2927542283585508456710 ~2005
2927550443585510088710 ~2005
29275867971756552078311 ~2006
29277936774098911147911 ~2007
Exponent Prime Factor Digits Year
2927833511585566702310 ~2005
2928149363585629872710 ~2005
2928199619585639923910 ~2005
2928339059585667811910 ~2005
2928371291585674258310 ~2005
2928461951585692390310 ~2005
2928536711585707342310 ~2005
292861045912300163927912 ~2008
2928712883585742576710 ~2005
2928925691585785138310 ~2005
29289380811757362848711 ~2006
29289416771757365006311 ~2006
2929096763585819352710 ~2005
2929128563585825712710 ~2005
2929292783585858556710 ~2005
29293269731757596183911 ~2006
2929340783585868156710 ~2005
2929457579585891515910 ~2005
2929547303585909460710 ~2005
2929552091585910418310 ~2005
29299099492343927959311 ~2006
2929987331585997466310 ~2005
2929995983585999196710 ~2005
29301363292344109063311 ~2006
293016433737506103513712 ~2009
Exponent Prime Factor Digits Year
2930206271586041254310 ~2005
2930227799586045559910 ~2005
2930292551586058510310 ~2005
29303140611758188436711 ~2006
29304527112930452711111 ~2007
29304883814688781409711 ~2007
293051015325202387315912 ~2009
29307496912344599752911 ~2006
2930757311586151462310 ~2005
2930949551586189910310 ~2005
2930978639586195727910 ~2005
29309858992344788719311 ~2006
2931022943586204588710 ~2005
29312060771758723646311 ~2006
2931256571586251314310 ~2005
2931395903586279180710 ~2005
29314013571758840814311 ~2006
2931425411586285082310 ~2005
2931427259586285451910 ~2005
2931447059586289411910 ~2005
2931513551586302710310 ~2005
29315353371758921202311 ~2006
2931597479586319495910 ~2005
29317733112931773311111 ~2007
2931847811586369562310 ~2005
Exponent Prime Factor Digits Year
2931889391586377878310 ~2005
2931913871586382774310 ~2005
2932051691586410338310 ~2005
29322891792932289179111 ~2007
2932300499586460099910 ~2005
29323077971759384678311 ~2006
29323302771759398166311 ~2006
2932420643586484128710 ~2005
29324611012345968880911 ~2006
2932670483586534096710 ~2005
293273299735192795964112 ~2009
2932819919586563983910 ~2005
2932861259586572251910 ~2005
2932881323586576264710 ~2005
2932929011586585802310 ~2005
2933139719586627943910 ~2005
29331803334106452466311 ~2007
29332324372346585949711 ~2006
2933314451586662890310 ~2005
2933454383586690876710 ~2005
29334898439387167497711 ~2008
2933501999586700399910 ~2005
2933621219586724243910 ~2005
29336242571760174554311 ~2006
29336418772346913501711 ~2006
Home
5.037.460 digits
e-mail
25-09-07