Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
18601548171116092890311 ~2005
1860263351372052670310 ~2003
1860285263372057052710 ~2003
1860315071372063014310 ~2003
1860343763372068752710 ~2003
1860346739372069347910 ~2003
18604775811116286548711 ~2005
1860525659372105131910 ~2003
18605357231860535723111 ~2005
1860546959372109391910 ~2003
1860717863372143572710 ~2003
1860725903372145180710 ~2003
1860732371372146474310 ~2003
1860777071372155414310 ~2003
18608697971116521878311 ~2005
18609192198932412251311 ~2007
18609681411488774512911 ~2005
1860983543372196708710 ~2003
1861005203372201040710 ~2003
1861013123372202624710 ~2003
1861182443372236488710 ~2003
18613169095583950727111 ~2006
18613196531116791791911 ~2005
186136368719730455082312 ~2008
1861380491372276098310 ~2003
Exponent Prime Factor Digits Year
1861471103372294220710 ~2003
18614751771489180141711 ~2005
1861488599372297719910 ~2003
1861492751372298550310 ~2003
1861493219372298643910 ~2003
18614956212978392993711 ~2006
1861499723372299944710 ~2003
1861512959372302591910 ~2003
18615191571489215325711 ~2005
1861541039372308207910 ~2003
1861595159372319031910 ~2003
18616280391489302431311 ~2005
1861667123372333424710 ~2003
18617119975585135991111 ~2006
1861995251372399050310 ~2003
1862041283372408256710 ~2003
1862074559372414911910 ~2003
1862078651372415730310 ~2003
1862264639372452927910 ~2003
18622716171489817293711 ~2005
1862459831372491966310 ~2003
18624739331117484359911 ~2005
1862492003372498400710 ~2003
18625021974470005272911 ~2006
18625098671862509867111 ~2005
Exponent Prime Factor Digits Year
1862560571372512114310 ~2003
1862631983372526396710 ~2003
1862636123372527224710 ~2003
18626688131117601287911 ~2005
1862700683372540136710 ~2003
18627390011117643400711 ~2005
1862754683372550936710 ~2003
1862759771372551954310 ~2003
18628310771117698646311 ~2005
1862992343372598468710 ~2003
18630091735589027519111 ~2006
1863009383372601876710 ~2003
18631051931117863115911 ~2005
18631134791863113479111 ~2005
1863138779372627755910 ~2003
1863179771372635954310 ~2003
1863333779372666755910 ~2003
18633496132608689458311 ~2005
1863363923372672784710 ~2003
1863372971372674594310 ~2003
1863417071372683414310 ~2003
1863427211372685442310 ~2003
18635697591490855807311 ~2005
18635944011490875520911 ~2005
1863632591372726518310 ~2003
Exponent Prime Factor Digits Year
18636682971490934637711 ~2005
1863715979372743195910 ~2003
18637553596336768220711 ~2006
1863768899372753779910 ~2003
1863858131372771626310 ~2003
1863863951372772790310 ~2003
1863873083372774616710 ~2003
1863886631372777326310 ~2003
18638949793355010962311 ~2006
1863927011372785402310 ~2003
18639853095591955927111 ~2006
18639889611491191168911 ~2005
18640154294473637029711 ~2006
18640174371118410462311 ~2005
1864138931372827786310 ~2003
18641938011491355040911 ~2005
18642786171491422893711 ~2005
1864286111372857222310 ~2003
1864358579372871715910 ~2003
1864385723372877144710 ~2003
1864390403372878080710 ~2003
18644116931118647015911 ~2005
1864428911372885782310 ~2003
18644393098949308683311 ~2007
1864465331372893066310 ~2003
Home
5.157.210 digits
e-mail
25-11-02