Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
18206946131092416767911 ~2005
1820776883364155376710 ~2003
1820789843364157968710 ~2003
18208564131092513847911 ~2005
18208639511820863951111 ~2005
1820867183364173436710 ~2003
1820950559364190111910 ~2003
18209688171092581290311 ~2005
1821015263364203052710 ~2003
18210724271821072427111 ~2005
1821089183364217836710 ~2003
1821148403364229680710 ~2003
1821149399364229879910 ~2003
1821174191364234838310 ~2003
18211828434370838823311 ~2006
18212409432913985508911 ~2006
1821280451364256090310 ~2003
1821280871364256174310 ~2003
1821307931364261586310 ~2003
1821345563364269112710 ~2003
18214939371092896362311 ~2005
1821506759364301351910 ~2003
18215195931092911755911 ~2005
18215754611092945276711 ~2005
1821643283364328656710 ~2003
Exponent Prime Factor Digits Year
1821648011364329602310 ~2003
1821673559364334711910 ~2003
1821685259364337051910 ~2003
1821756311364351262310 ~2003
1821765791364353158310 ~2003
18217717131093063027911 ~2005
1821778103364355620710 ~2003
1821788543364357708710 ~2003
1821802211364360442310 ~2003
18219139571093148374311 ~2005
18220114972550816095911 ~2005
1822051859364410371910 ~2003
18221073171093264390311 ~2005
1822184051364436810310 ~2003
1822212863364442572710 ~2003
18223462032915753924911 ~2006
1822413539364482707910 ~2003
18224365731093461943911 ~2005
1822460459364492091910 ~2003
18225025793280504642311 ~2006
18226621731093597303911 ~2005
18226692371093601542311 ~2005
18226977531093618651911 ~2005
1822865123364573024710 ~2003
18229142531093748551911 ~2005
Exponent Prime Factor Digits Year
182293258933541959637712 ~2008
1822973759364594751910 ~2003
1822973891364594778310 ~2003
18230361611093821696711 ~2005
1823053091364610618310 ~2003
18231421339844967518311 ~2007
18231647692552430676711 ~2005
1823283179364656635910 ~2003
18233745711458699656911 ~2005
1823395523364679104710 ~2003
18234338531094060311911 ~2005
18235090195835228860911 ~2006
18235281835835290185711 ~2006
1823567171364713434310 ~2003
1823599439364719887910 ~2003
1823695631364739126310 ~2003
18236973411094218404711 ~2005
1823703803364740760710 ~2003
1823723663364744732710 ~2003
1823725511364745102310 ~2003
1823730971364746194310 ~2003
1823769203364753840710 ~2003
1823809931364761986310 ~2003
18238433932553380750311 ~2005
18238796331094327779911 ~2005
Exponent Prime Factor Digits Year
1823935079364787015910 ~2003
1824001103364800220710 ~2003
18240301011459224080911 ~2005
1824085751364817150310 ~2003
18241692731094501563911 ~2005
1824183551364836710310 ~2003
18242559591459404767311 ~2005
1824282431364856486310 ~2003
18242920311459433624911 ~2005
1824332771364866554310 ~2003
1824356903364871380710 ~2003
1824413771364882754310 ~2003
1824470519364894103910 ~2003
1824533471364906694310 ~2003
1824566759364913351910 ~2003
1824569723364913944710 ~2003
1824788939364957787910 ~2003
18248980031824898003111 ~2005
1824915899364983179910 ~2003
1824943583364988716710 ~2003
1825112291365022458310 ~2003
1825130663365026132710 ~2003
1825146671365029334310 ~2003
1825168283365033656710 ~2003
1825168391365033678310 ~2003
Home
5.157.210 digits
e-mail
25-11-02