Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
18019046091441523687311 ~2005
1801953311360390662310 ~2003
1801977623360395524710 ~2003
1801986611360397322310 ~2003
1802033483360406696710 ~2003
18020786511441662920911 ~2005
1802206811360441362310 ~2003
1802223191360444638310 ~2003
1802337011360467402310 ~2003
1802341811360468362310 ~2003
18023559371081413562311 ~2004
1802455439360491087910 ~2003
1802552651360510530310 ~2003
18025898271442071861711 ~2005
18026030271442082421711 ~2005
18026486092523708052711 ~2005
1802671919360534383910 ~2003
18027281639013640815111 ~2007
1802729399360545879910 ~2003
18027900797571718331911 ~2007
18028456211081707372711 ~2004
1802857211360571442310 ~2003
18028627391802862739111 ~2005
18028856571081731394311 ~2004
18028886531081733191911 ~2004
Exponent Prime Factor Digits Year
18029018393245223310311 ~2006
1802947859360589571910 ~2003
18030056931081803415911 ~2004
18030599571081835974311 ~2004
18030748812884919809711 ~2006
18030839511442467160911 ~2005
1803097151360619430310 ~2003
18031196991442495759311 ~2005
1803144383360628876710 ~2003
1803150983360630196710 ~2003
1803252491360650498310 ~2003
1803256271360651254310 ~2003
1803294191360658838310 ~2003
1803318683360663736710 ~2003
1803384683360676936710 ~2003
1803425471360685094310 ~2003
18034914913246284683911 ~2006
1803558131360711626310 ~2003
1803672011360734402310 ~2003
1803689099360737819910 ~2003
1803689939360737987910 ~2003
1803696263360739252710 ~2003
1803721919360744383910 ~2003
18037226998657868955311 ~2007
18037516132525252258311 ~2005
Exponent Prime Factor Digits Year
1803755363360751072710 ~2003
18037872171443029773711 ~2005
1803866231360773246310 ~2003
1803868823360773764710 ~2003
1803878231360775646310 ~2003
18038790711443103256911 ~2005
18039965172886394427311 ~2006
18041089791443287183311 ~2005
1804136879360827375910 ~2003
18041412772525797787911 ~2005
18041710031804171003111 ~2005
1804226003360845200710 ~2003
1804375763360875152710 ~2003
1804380299360876059910 ~2003
1804451639360890327910 ~2003
1804473323360894664710 ~2003
1804482539360896507910 ~2003
1804510343360902068710 ~2003
1804581923360916384710 ~2003
1804585511360917102310 ~2003
1804684943360936988710 ~2003
18046854131082811247911 ~2004
1804699943360939988710 ~2003
18047521193248553814311 ~2006
180476701111911462272712 ~2007
Exponent Prime Factor Digits Year
18049296971082957818311 ~2004
1804959239360991847910 ~2003
18049660491443972839311 ~2005
1805035091361007018310 ~2003
18050482611444038608911 ~2005
1805090051361018010310 ~2003
1805190059361038011910 ~2003
1805236871361047374310 ~2003
1805251691361050338310 ~2003
18053785011444302800911 ~2005
1805510303361102060710 ~2003
1805516183361103236710 ~2003
1805541863361108372710 ~2003
1805658923361131784710 ~2003
18057062473250271244711 ~2006
1805729531361145906310 ~2003
1805741219361148243910 ~2003
18058337691444667015311 ~2005
18059250011083555000711 ~2004
18059363811444749104911 ~2005
1805963051361192610310 ~2003
1805970779361194155910 ~2003
18061407591444912607311 ~2005
1806165191361233038310 ~2003
1806214379361242875910 ~2003
Home
5.157.210 digits
e-mail
25-11-02