Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1592906531318581306310 ~2003
1592911403318582280710 ~2003
15930960912867572963911 ~2005
1593136859318627371910 ~2003
1593154397955892638310 ~2004
15931574091274525927311 ~2004
15931805093823633221711 ~2006
1593216419318643283910 ~2003
15932669472867880504711 ~2005
1593313619318662723910 ~2003
1593317003318663400710 ~2003
1593348193956008915910 ~2004
1593350471318670094310 ~2003
15933563811274685104911 ~2004
1593409523318681904710 ~2003
1593535093956121055910 ~2004
1593558803318711760710 ~2003
15936007732231041082311 ~2005
1593618431318723686310 ~2003
1593621203318724240710 ~2003
1593682691318736538310 ~2003
1593692363318738472710 ~2003
15937939212550070273711 ~2005
1593852341956311404710 ~2004
1593890891318778178310 ~2003
Exponent Prime Factor Digits Year
1593976991318795398310 ~2003
15940670533506947516711 ~2005
1594129037956477422310 ~2004
15941396112869451299911 ~2005
1594158239318831647910 ~2003
1594184519318836903910 ~2003
15942353596376941436111 ~2006
1594236719318847343910 ~2003
1594315031318863006310 ~2003
1594316879318863375910 ~2003
1594330691318866138310 ~2003
1594335503318867100710 ~2003
1594386119318877223910 ~2003
1594427903318885580710 ~2003
1594517213956710327910 ~2004
1594537751318907550310 ~2003
1594569071318913814310 ~2003
1594588343318917668710 ~2003
1594660451318932090310 ~2003
1594693643318938728710 ~2003
1594714151318942830310 ~2003
15947502732551600436911 ~2005
1594754699318950939910 ~2003
1594766363318953272710 ~2003
1594822919318964583910 ~2003
Exponent Prime Factor Digits Year
1594830119318966023910 ~2003
1594843163318968632710 ~2003
1594850837956910502310 ~2004
1594895639318979127910 ~2003
1594915463318983092710 ~2003
1594982843318996568710 ~2003
15950048711595004871111 ~2005
159503530710527233026312 ~2007
15950422011276033760911 ~2004
1595056031319011206310 ~2003
15950798397656383227311 ~2006
1595118659319023731910 ~2003
1595124781957074868710 ~2004
15951355732233189802311 ~2005
1595210753957126451910 ~2004
1595268179319053635910 ~2003
1595306039319061207910 ~2003
1595443331319088666310 ~2003
1595460959319092191910 ~2003
1595485763319097152710 ~2003
1595515511319103102310 ~2003
15955212234148355179911 ~2006
15955252992871945538311 ~2005
1595554141957332484710 ~2004
15955776291276462103311 ~2004
Exponent Prime Factor Digits Year
1595656501957393900710 ~2004
1595685677957411406310 ~2004
15956883597659304123311 ~2006
1595724323319144864710 ~2003
1595728331319145666310 ~2003
1595852231319170446310 ~2003
1595868119319173623910 ~2003
1595873183319174636710 ~2003
15959116971276729357711 ~2004
1595934803319186960710 ~2003
15959540836703007148711 ~2006
1595990833957594499910 ~2004
1596113243319222648710 ~2003
1596177239319235447910 ~2003
15962112711276969016911 ~2004
15962413791276993103311 ~2004
1596328031319265606310 ~2003
1596370199319274039910 ~2003
1596435539319287107910 ~2003
15964455111277156408911 ~2004
1596481319319296263910 ~2003
1596501383319300276710 ~2003
15965142532235119954311 ~2005
1596593711319318742310 ~2003
1596599759319319951910 ~2003
Home
5.232.152 digits
e-mail
25-12-07