Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
17099619771367969581711 ~2005
17100480317182201730311 ~2006
17100686234104164695311 ~2006
1710100079342020015910 ~2003
17101464411368117152911 ~2005
1710147143342029428710 ~2003
1710327803342065560710 ~2003
1710370043342074008710 ~2003
1710430583342086116710 ~2003
1710498623342099724710 ~2003
17105929011368474320911 ~2005
1710630143342126028710 ~2003
1710663863342132772710 ~2003
1710665279342133055910 ~2003
17107626371026457582311 ~2004
17108185739580584008911 ~2007
17108343194106002365711 ~2006
1710848831342169766310 ~2003
17108722574106093416911 ~2006
17109445131026566707911 ~2004
1710969311342193862310 ~2003
17109870171026592210311 ~2004
17110493571368839485711 ~2005
1711066499342213299910 ~2003
1711090259342218051910 ~2003
Exponent Prime Factor Digits Year
1711113731342222746310 ~2003
1711113923342222784710 ~2003
171112993316426847356912 ~2007
1711161059342232211910 ~2003
17112090234449143459911 ~2006
1711281311342256262310 ~2003
1711373819342274763910 ~2003
1711375691342275138310 ~2003
17114016075818765463911 ~2006
1711496051342299210310 ~2003
1711514999342302999910 ~2003
1711528883342305776710 ~2003
17116650191711665019111 ~2005
1711720343342344068710 ~2003
1711775771342355154310 ~2003
1711775963342355192710 ~2003
1711873763342374752710 ~2003
1711907783342381556710 ~2003
1711940663342388132710 ~2003
17119408871711940887111 ~2005
1711986179342397235910 ~2003
1711999571342399914310 ~2003
17120491731027229503911 ~2004
1712065991342413198310 ~2003
1712098991342419798310 ~2003
Exponent Prime Factor Digits Year
1712184119342436823910 ~2003
1712200403342440080710 ~2003
1712217779342443555910 ~2003
1712267171342453434310 ~2003
1712284103342456820710 ~2003
1712373359342474671910 ~2003
1712387531342477506310 ~2003
1712406599342481319910 ~2003
17124184931027451095911 ~2004
17124246418219638276911 ~2007
17124406371027464382311 ~2004
1712441303342488260710 ~2003
1712486879342497375910 ~2003
1712493743342498748710 ~2003
1712508431342501686310 ~2003
17125515312740082449711 ~2005
1712718443342543688710 ~2003
17127279431712727943111 ~2005
1712788463342557692710 ~2003
1712834891342566978310 ~2003
17128496471712849647111 ~2005
1712854679342570935910 ~2003
1712865359342573071910 ~2003
17129176311370334104911 ~2005
1712960003342592000710 ~2003
Exponent Prime Factor Digits Year
1712980991342596198310 ~2003
17130197417879890808711 ~2006
17130699771027841986311 ~2004
17130840971027850458311 ~2004
1713084671342616934310 ~2003
1713088931342617786310 ~2003
1713124043342624808710 ~2003
17131470411027888224711 ~2004
17132061131027923667911 ~2004
17132578512741212561711 ~2005
17132667471370613397711 ~2005
17132826674111878400911 ~2006
17133305835825323982311 ~2006
1713362351342672470310 ~2003
1713373643342674728710 ~2003
1713376139342675227910 ~2003
1713475331342695066310 ~2003
1713549023342709804710 ~2003
1713558839342711767910 ~2003
1713567059342713411910 ~2003
17135857391713585739111 ~2005
1713614999342722999910 ~2003
17136514191370921135311 ~2005
1713655679342731135910 ~2003
1713663443342732688710 ~2003
Home
5.157.210 digits
e-mail
25-11-02