Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2987415479597483095910 ~2005
2987442719597488543910 ~2005
2987681843597536368710 ~2005
2987721923597544384710 ~2005
2987864003597572800710 ~2005
2987893379597578675910 ~2005
29880142571792808554311 ~2006
2988081059597616211910 ~2005
2988126503597625300710 ~2005
2988157391597631478310 ~2005
2988169451597633890310 ~2005
2988211559597642311910 ~2005
2988316679597663335910 ~2005
2988393623597678724710 ~2005
2988611039597722207910 ~2005
2988615803597723160710 ~2005
29887745771793264746311 ~2006
2988820979597764195910 ~2005
29889621912988962191111 ~2007
2989069439597813887910 ~2005
29891218931793473135911 ~2006
2989131923597826384710 ~2005
2989177703597835540710 ~2005
2989322951597864590310 ~2005
29893887075380899672711 ~2007
Exponent Prime Factor Digits Year
29894228418968268523111 ~2008
2989525919597905183910 ~2005
2989567463597913492710 ~2005
2989581671597916334310 ~2005
2989652111597930422310 ~2005
2989696091597939218310 ~2005
2989704911597940982310 ~2005
2989709351597941870310 ~2005
2989733819597946763910 ~2005
29897429331793845759911 ~2006
29897729174783636667311 ~2007
2989913999597982799910 ~2005
29900560611794033636711 ~2006
2990297903598059580710 ~2005
29903953077176948736911 ~2008
2990637131598127426310 ~2005
2990729783598145956710 ~2005
2990921243598184248710 ~2005
2991029243598205848710 ~2005
2991196319598239263910 ~2005
29914381574786301051311 ~2007
2991460463598292092710 ~2005
29915300771794918046311 ~2006
2991537599598307519910 ~2005
2991739763598347952710 ~2005
Exponent Prime Factor Digits Year
29918268914786923025711 ~2007
2991978719598395743910 ~2005
2992124183598424836710 ~2005
29921262371795275742311 ~2006
2992230023598446004710 ~2005
29922641931795358515911 ~2006
299230056121544564039312 ~2009
2992345799598469159910 ~2005
2992368383598473676710 ~2005
2992440683598488136710 ~2005
29924600771795476046311 ~2006
2992482959598496591910 ~2005
2992516883598503376710 ~2005
2992642151598528430310 ~2005
2992693271598538654310 ~2005
29929285972394342877711 ~2006
29931088012394487040911 ~2006
29931356572394508525711 ~2006
29931713474789074155311 ~2007
2993335223598667044710 ~2005
29936712292394936983311 ~2006
2993817119598763423910 ~2005
2993895731598779146310 ~2005
29939184011796351040711 ~2006
29939920372395193629711 ~2006
Exponent Prime Factor Digits Year
2994108563598821712710 ~2005
29942352534191929354311 ~2007
29942374872994237487111 ~2007
2994283823598856764710 ~2005
2994385391598877078310 ~2005
2994532763598906552710 ~2005
2994644519598928903910 ~2005
29947265211796835912711 ~2006
2994832091598966418310 ~2005
2994973739598994747910 ~2005
2994984743598996948710 ~2005
2995065299599013059910 ~2005
2995451891599090378310 ~2005
29955017811797301068711 ~2006
2995505099599101019910 ~2005
2995542083599108416710 ~2005
29957285572396582845711 ~2006
29957328131797439687911 ~2006
29957584611797455076711 ~2006
2996131163599226232710 ~2005
2996140079599228015910 ~2005
2996212643599242528710 ~2005
2996218919599243783910 ~2005
2996287331599257466310 ~2005
2996445671599289134310 ~2005
Home
4.724.182 digits
e-mail
25-04-13