Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
14069759712251161553711 ~2005
1406986211281397242310 ~2002
1406997353844198411910 ~2004
1407121643281424328710 ~2002
1407146483281429296710 ~2002
1407175403281435080710 ~2002
1407199379281439875910 ~2002
1407209291281441858310 ~2002
14072185676754649121711 ~2006
1407296603281459320710 ~2002
1407312743281462548710 ~2002
1407397499281479499910 ~2002
14074257133096336568711 ~2005
1407473101844483860710 ~2004
1407474119281494823910 ~2002
14074922272533486008711 ~2005
14076045291970646340711 ~2005
1407613439281522687910 ~2002
14076391271407639127111 ~2004
14076392091126111367311 ~2004
1407651491281530298310 ~2002
14076608871126128709711 ~2004
1407676691281535338310 ~2002
1407755003281551000710 ~2002
1407790931281558186310 ~2002
Exponent Prime Factor Digits Year
1407791243281558248710 ~2002
1407830159281566031910 ~2002
1407839663281567932710 ~2002
1407864791281572958310 ~2002
1407896183281579236710 ~2002
1407899879281579975910 ~2002
1407942461844765476710 ~2004
14079482391126358591311 ~2004
1408004219281600843910 ~2002
1408006163281601232710 ~2002
1408151113844890667910 ~2004
1408179131281635826310 ~2002
1408186573844911943910 ~2004
1408235243281647048710 ~2002
1408244053844946431910 ~2004
14082505131971550718311 ~2005
1408252931281650586310 ~2002
1408279871281655974310 ~2002
1408296563281659312710 ~2002
14082966291126637303311 ~2004
1408314581844988748710 ~2004
1408357019281671403910 ~2002
1408364519281672903910 ~2002
1408417331281683466310 ~2002
1408434431281686886310 ~2002
Exponent Prime Factor Digits Year
1408479983281695996710 ~2002
1408492859281698571910 ~2002
1408496381845097828710 ~2004
1408500083281700016710 ~2002
1408501271281700254310 ~2002
1408602781845161668710 ~2004
14086214575352761536711 ~2006
1408690919281738183910 ~2002
1408703123281740624710 ~2002
1408705271281741054310 ~2002
1408759841845255904710 ~2004
1408761131281752226310 ~2002
1408767323281753464710 ~2002
1408793531281758706310 ~2002
1408794323281758864710 ~2002
1408798091281759618310 ~2002
1408810583281762116710 ~2002
14088111891127048951311 ~2004
1408818263281763652710 ~2002
1408834139281766827910 ~2002
1408840739281768147910 ~2002
1408965683281793136710 ~2002
1408977239281795447910 ~2002
1408991123281798224710 ~2002
1409018291281803658310 ~2002
Exponent Prime Factor Digits Year
1409062661845437596710 ~2004
1409088311281817662310 ~2002
140909066313527270364912 ~2007
1409155883281831176710 ~2002
1409171171281834234310 ~2002
1409179619281835923910 ~2002
1409234063281846812710 ~2002
1409288183281857636710 ~2002
1409301359281860271910 ~2002
14093338371973067371911 ~2005
1409413091281882618310 ~2002
1409454073845672443910 ~2004
14094542295637816916111 ~2006
14095095795919940231911 ~2006
1409513459281902691910 ~2002
1409527333845716399910 ~2004
1409528641845717184710 ~2004
14096031592537285686311 ~2005
1409625901845775540710 ~2004
1409674181845804508710 ~2004
1409690963281938192710 ~2002
1409695211281939042310 ~2002
1409739119281947823910 ~2002
14097449931973642990311 ~2005
1409796863281959372710 ~2002
Home
5.157.210 digits
e-mail
25-11-02