Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1357481243271496248710 ~2002
13575020331900502846311 ~2004
1357524911271504982310 ~2002
1357527217814516330310 ~2004
1357646123271529224710 ~2002
1357671863271534372710 ~2002
1357682471271536494310 ~2002
1357695203271539040710 ~2002
1357733231271546646310 ~2002
1357757231271551446310 ~2002
13577888691900904416711 ~2004
1357798553814679131910 ~2004
1357856039271571207910 ~2002
1357860323271572064710 ~2002
1357871051271574210310 ~2002
1357875203271575040710 ~2002
1357881803271576360710 ~2002
1357916051271583210310 ~2002
13579209291901089300711 ~2004
1357921273814752763910 ~2004
1357939631271587926310 ~2002
1357960679271592135910 ~2002
1357980251271596050310 ~2002
1357998839271599767910 ~2002
1358003819271600763910 ~2002
Exponent Prime Factor Digits Year
13580538171086443053711 ~2004
1358141663271628332710 ~2002
1358145179271629035910 ~2002
13581695693259606965711 ~2005
1358176331271635266310 ~2002
1358187263271637452710 ~2002
13582474915704639462311 ~2006
1358320823271664164710 ~2002
1358346611271669322310 ~2002
1358353793815012275910 ~2004
1358387117815032270310 ~2004
1358440151271688030310 ~2002
1358487503271697500710 ~2002
1358529071271705814310 ~2002
1358599043271719808710 ~2002
1358662691271732538310 ~2002
1358716979271743395910 ~2002
13587699672174031947311 ~2005
13587923172174067707311 ~2005
1358811263271762252710 ~2002
1358811659271762331910 ~2002
1358829119271765823910 ~2002
1358868593815321155910 ~2004
1358885999271777199910 ~2002
1358895899271779179910 ~2002
Exponent Prime Factor Digits Year
1358906579271781315910 ~2002
1358917223271783444710 ~2002
1358923103271784620710 ~2002
13589652191358965219111 ~2004
13589708871087176709711 ~2004
1359024119271804823910 ~2002
1359032231271806446310 ~2002
1359046817815428090310 ~2004
13590538035436215212111 ~2006
13590568692989925111911 ~2005
1359112691271822538310 ~2002
1359148799271829759910 ~2002
1359150713815490427910 ~2004
13591529591359152959111 ~2004
1359193331271838666310 ~2002
1359247523271849504710 ~2002
1359275363271855072710 ~2002
1359283511271856702310 ~2002
1359283703271856740710 ~2002
1359304619271860923910 ~2002
13593466992446824058311 ~2005
1359358691271871738310 ~2002
13593653511087492280911 ~2004
13593693312174990929711 ~2005
1359478223271895644710 ~2002
Exponent Prime Factor Digits Year
1359498097815698858310 ~2004
13595387512447169751911 ~2005
13595552591359555259111 ~2004
1359585431271917086310 ~2002
1359605501815763300710 ~2004
13596140292991150863911 ~2005
1359727091271945418310 ~2002
1359730523271946104710 ~2002
1359761531271952306310 ~2002
1359786899271957379910 ~2002
1359814331271962866310 ~2002
1359834491271966898310 ~2002
1359938603271987720710 ~2002
1359991883271998376710 ~2002
1360021583272004316710 ~2002
1360070111272014022310 ~2002
1360075523272015104710 ~2002
1360099511272019902310 ~2002
1360156571272031314310 ~2002
1360172939272034587910 ~2002
1360189151272037830310 ~2002
13602158931904302250311 ~2004
1360231991272046398310 ~2002
1360277111272055422310 ~2002
13602996312176479409711 ~2005
Home
5.157.210 digits
e-mail
25-11-02