Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2673450239534690047910 ~2005
26735689012138855120911 ~2006
2673664991534732998310 ~2005
2673935399534787079910 ~2005
26739897371604393842311 ~2006
2673995171534799034310 ~2005
2674029791534805958310 ~2005
26740665371604439922311 ~2006
2674089371534817874310 ~2005
26741026032674102603111 ~2006
2674289171534857834310 ~2005
26743303874278928619311 ~2007
2674473299534894659910 ~2005
2674476923534895384710 ~2005
2674531571534906314310 ~2005
2674585271534917054310 ~2005
2674625711534925142310 ~2005
2674631243534926248710 ~2005
26746727872139738229711 ~2006
26747314011604838840711 ~2006
26747494571604849674311 ~2006
26747835131604870107911 ~2006
26750406531605024391911 ~2006
2675154539535030907910 ~2005
2675174039535034807910 ~2005
Exponent Prime Factor Digits Year
267517746717656171282312 ~2008
26752025571605121534311 ~2006
26753441712675344171111 ~2006
26755055414280808865711 ~2007
2675720303535144060710 ~2005
2675753519535150703910 ~2005
26757600771605456046311 ~2006
2675776151535155230310 ~2005
26759261512140740920911 ~2006
2676083363535216672710 ~2005
26761863112140949048911 ~2006
2676206303535241260710 ~2005
2676270419535254083910 ~2005
26763283931605797035911 ~2006
2676576443535315288710 ~2005
2676600299535320059910 ~2005
2676610019535322003910 ~2005
26766482576423955816911 ~2007
2676753503535350700710 ~2005
2676780719535356143910 ~2005
2676797219535359443910 ~2005
2676847703535369540710 ~2005
2676851279535370255910 ~2005
2676868451535373690310 ~2005
26772554571606353274311 ~2006
Exponent Prime Factor Digits Year
2677268411535453682310 ~2005
26772766611606365996711 ~2006
2677313231535462646310 ~2005
26773213731606392823911 ~2006
26773670811606420248711 ~2006
26774392879103293575911 ~2008
2677806203535561240710 ~2005
2677909379535581875910 ~2005
26779594072142367525711 ~2006
26781157011606869420711 ~2006
2678480219535696043910 ~2005
2678552819535710563910 ~2005
2678704403535740880710 ~2005
26787914832678791483111 ~2006
2678799971535759994310 ~2005
26788734974286197595311 ~2007
2678880131535776026310 ~2005
2678933123535786624710 ~2005
2679074759535814951910 ~2005
2679249239535849847910 ~2005
2679537779535907555910 ~2005
26797318011607839080711 ~2006
2679749519535949903910 ~2005
26797499211607849952711 ~2006
26800087138040026139111 ~2008
Exponent Prime Factor Digits Year
2680098383536019676710 ~2005
2680138691536027738310 ~2005
268018805943419046555912 ~2009
2680234559536046911910 ~2005
26802564712144205176911 ~2006
2680353551536070710310 ~2005
2680415351536083070310 ~2005
2680461659536092331910 ~2005
2680620599536124119910 ~2005
2680890983536178196710 ~2005
2680948499536189699910 ~2005
2681059943536211988710 ~2005
2681147219536229443910 ~2005
2681236163536247232710 ~2005
2681280011536256002310 ~2005
2681292371536258474310 ~2005
2681546363536309272710 ~2005
26819146331609148779911 ~2006
26819248731609154923911 ~2006
2682023843536404768710 ~2005
2682249359536449871910 ~2005
26823759731609425583911 ~2006
26824933914828488103911 ~2007
2682675371536535074310 ~2005
26826851236438444295311 ~2007
Home
4.724.182 digits
e-mail
25-04-13