Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1855978703371195740710 ~2003
1855985399371197079910 ~2003
18560082371113604942311 ~2005
1856027279371205455910 ~2003
1856066951371213390310 ~2003
1856082191371216438310 ~2003
18561417672969826827311 ~2006
1856159003371231800710 ~2003
1856171519371234303910 ~2003
18562238411113734304711 ~2005
1856244251371248850310 ~2003
18562746892598784564711 ~2005
1856334719371266943910 ~2003
1856348951371269790310 ~2003
1856389763371277952710 ~2003
1856524331371304866310 ~2003
1856651711371330342310 ~2003
1856658299371331659910 ~2003
1856788691371357738310 ~2003
18568182611114090956711 ~2005
1856913251371382650310 ~2003
1856946599371389319910 ~2003
18569854996313750696711 ~2006
1856989811371397962310 ~2003
18570315134085469328711 ~2006
Exponent Prime Factor Digits Year
1857037079371407415910 ~2003
1857195971371439194310 ~2003
1857242963371448592710 ~2003
18572521211114351272711 ~2005
1857286331371457266310 ~2003
18573167572600243459911 ~2005
18573182692600245576711 ~2005
1857326459371465291910 ~2003
1857336251371467250310 ~2003
1857472583371494516710 ~2003
18575732695572719807111 ~2006
1857591383371518276710 ~2003
1857697571371539514310 ~2003
18577122011114627320711 ~2005
18577318571114639114311 ~2005
1857772643371554528710 ~2003
1857776951371555390310 ~2003
1857959651371591930310 ~2003
18579823394459157613711 ~2006
18580074912972811985711 ~2006
18580399611486431968911 ~2005
1858059179371611835910 ~2003
1858101911371620382310 ~2003
18581372211486509776911 ~2005
1858170071371634014310 ~2003
Exponent Prime Factor Digits Year
18582656271486612501711 ~2005
1858307063371661412710 ~2003
1858387991371677598310 ~2003
1858415519371683103910 ~2003
1858487843371697568710 ~2003
18585326391486826111311 ~2005
1858676003371735200710 ~2003
1858701671371740334310 ~2003
1858791323371758264710 ~2003
1858794191371758838310 ~2003
1858803371371760674310 ~2003
1858812779371762555910 ~2003
1858861883371772376710 ~2003
1858996523371799304710 ~2003
18590070671859007067111 ~2005
1859018099371803619910 ~2003
1859094599371818919910 ~2003
1859108183371821636710 ~2003
18591234072974597451311 ~2006
18592064171115523850311 ~2005
18592354911487388392911 ~2005
18592532171115551930311 ~2005
1859288159371857631910 ~2003
1859327231371865446310 ~2003
1859433143371886628710 ~2003
Exponent Prime Factor Digits Year
1859463719371892743910 ~2003
1859479103371895820710 ~2003
18595003371115700202311 ~2005
1859509199371901839910 ~2003
1859600579371920115910 ~2003
1859624759371924951910 ~2003
1859849879371969975910 ~2003
1859906351371981270310 ~2003
18600106971116006418311 ~2005
1860106931372021386310 ~2003
1860141659372028331910 ~2003
18601548171116092890311 ~2005
1860263351372052670310 ~2003
1860285263372057052710 ~2003
1860315071372063014310 ~2003
1860343763372068752710 ~2003
1860525659372105131910 ~2003
1860546959372109391910 ~2003
1860717863372143572710 ~2003
1860725903372145180710 ~2003
1860777071372155414310 ~2003
18608697971116521878311 ~2005
18609192198932412251311 ~2007
18609681411488774512911 ~2005
1860983543372196708710 ~2003
Home
4.903.097 digits
e-mail
25-07-08