Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1167971137700782682310 ~2003
1167981911233596382310 ~2002
1168015811233603162310 ~2002
1168026971233605394310 ~2002
1168030991233606198310 ~2002
1168042703233608540710 ~2002
1168170599233634119910 ~2002
1168204463233640892710 ~2002
1168207451233641490310 ~2002
1168207679233641535910 ~2002
1168240343233648068710 ~2002
1168305371233661074310 ~2002
1168373797701024278310 ~2003
1168423163233684632710 ~2002
1168449143233689828710 ~2002
1168471511934777208910 ~2003
1168488263233697652710 ~2002
1168547279233709455910 ~2002
1168619093701171455910 ~2003
1168635841701181504710 ~2003
1168649123233729824710 ~2002
1168666391233733278310 ~2002
1168676219233735243910 ~2002
1168704983233740996710 ~2002
1168735861701241516710 ~2003
Exponent Prime Factor Digits Year
11687591592805021981711 ~2004
1168770371233754074310 ~2002
11687811475843905735111 ~2005
1168814711233762942310 ~2002
1168825181701295108710 ~2003
1168901843233780368710 ~2002
11689148213740527427311 ~2005
1168931957701359174310 ~2003
1168937111233787422310 ~2002
1169012549935210039310 ~2003
1169019359233803871910 ~2002
11691450371870632059311 ~2004
1169185679233837135910 ~2002
1169220881701532528710 ~2003
1169239751233847950310 ~2002
1169245079233849015910 ~2002
1169246783233849356710 ~2002
1169252939233850587910 ~2002
11692550476781679272711 ~2005
1169262551233852510310 ~2002
1169300711233860142310 ~2002
1169309411233861882310 ~2002
1169342039233868407910 ~2002
1169375699233875139910 ~2002
11693758991169375899111 ~2004
Exponent Prime Factor Digits Year
1169426171233885234310 ~2002
1169477273701686363910 ~2003
1169487251233897450310 ~2002
1169520791233904158310 ~2002
1169574239233914847910 ~2002
1169605271233921054310 ~2002
1169628773701777263910 ~2003
1169671259233934251910 ~2002
1169689511233937902310 ~2002
1169701163233940232710 ~2002
1169744657701846794310 ~2003
1169776379233955275910 ~2002
1169796059233959211910 ~2002
1169832539935866031310 ~2003
1169845283233969056710 ~2002
1169850791233970158310 ~2002
1169865731233973146310 ~2002
1169869153701921491910 ~2003
1169899859233979971910 ~2002
1169996603233999320710 ~2002
1170015719234003143910 ~2002
1170026387936021109710 ~2003
1170029831234005966310 ~2002
1170045491234009098310 ~2002
11701073171872171707311 ~2004
Exponent Prime Factor Digits Year
1170145439234029087910 ~2002
11701777511170177751111 ~2004
1170192077936153661710 ~2003
1170200441702120264710 ~2003
1170228491234045698310 ~2002
1170263411234052682310 ~2002
11702891111170289111111 ~2004
1170323723234064744710 ~2002
1170333803234066760710 ~2002
11703575931638500630311 ~2004
11703689592808885501711 ~2004
1170378959234075791910 ~2002
1170397139234079427910 ~2002
1170417323234083464710 ~2002
1170433871234086774310 ~2002
1170443363234088672710 ~2002
1170447983234089596710 ~2002
1170497129936397703310 ~2003
1170519743234103948710 ~2002
1170522011234104402310 ~2002
1170538079234107615910 ~2002
1170571799234114359910 ~2002
1170573203234114640710 ~2002
1170582551234116510310 ~2002
1170582911234116582310 ~2002
Home
5.157.210 digits
e-mail
25-11-02