Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2262429203452485840710 ~2004
2262438551452487710310 ~2004
22625451912262545191111 ~2006
22625470611357528236711 ~2005
22625551331357533079911 ~2005
22627106411357626384711 ~2005
2262766991452553398310 ~2004
2262821219452564243910 ~2004
2262896039452579207910 ~2004
2263083923452616784710 ~2004
2263097363452619472710 ~2004
226313046110863026212912 ~2007
2263222583452644516710 ~2004
2263242659452648531910 ~2004
2263265831452653166310 ~2004
22632780411357966824711 ~2005
226335527920370197511112 ~2008
2263602023452720404710 ~2004
22636646511810931720911 ~2006
2263665023452733004710 ~2004
2263941503452788300710 ~2004
22639920411358395224711 ~2005
2264105159452821031910 ~2004
2264120063452824012710 ~2004
2264193803452838760710 ~2004
Exponent Prime Factor Digits Year
2264221103452844220710 ~2004
2264241299452848259910 ~2004
2264289803452857960710 ~2004
2264338871452867774310 ~2004
2264583731452916746310 ~2004
22646378211811710256911 ~2006
2264787383452957476710 ~2004
22649306931358958415911 ~2005
2265052631453010526310 ~2004
2265072263453014452710 ~2004
22655078573171710999911 ~2006
2265522923453104584710 ~2004
22656470511812517640911 ~2006
2265680639453136127910 ~2004
2265695951453139190310 ~2004
2265819971453163994310 ~2004
2265923879453184775910 ~2004
2265943643453188728710 ~2004
2266004243453200848710 ~2004
2266035143453207028710 ~2004
22660451211812836096911 ~2006
2266078583453215716710 ~2004
2266108319453221663910 ~2004
22661847077705028003911 ~2007
22662101571812968125711 ~2006
Exponent Prime Factor Digits Year
2266265483453253096710 ~2004
22663579971813086397711 ~2006
2266370783453274156710 ~2004
2266386299453277259910 ~2004
2266438511453287702310 ~2004
2266519991453303998310 ~2004
2266534811453306962310 ~2004
2266536059453307211910 ~2004
22666301171359978070311 ~2005
2266697063453339412710 ~2004
22668734097253994908911 ~2007
22668823633627011780911 ~2006
22669834371360190062311 ~2005
22670450571360227034311 ~2005
2267049023453409804710 ~2004
2267114303453422860710 ~2004
2267149499453429899910 ~2004
22672173432267217343111 ~2006
2267236403453447280710 ~2004
2267479523453495904710 ~2004
22675778594081640146311 ~2006
2267646743453529348710 ~2004
2267674511453534902310 ~2004
22678605411360716324711 ~2005
2267953823453590764710 ~2004
Exponent Prime Factor Digits Year
2268008279453601655910 ~2004
2268039659453607931910 ~2004
2268196883453639376710 ~2004
22682046072268204607111 ~2006
22682298891814583911311 ~2006
22682617971360957078311 ~2005
2268382019453676403910 ~2004
2268439619453687923910 ~2004
2268520811453704162310 ~2004
2268524411453704882310 ~2004
22685709611361142576711 ~2005
2268621011453724202310 ~2004
2268657383453731476710 ~2004
22687150211361229012711 ~2005
2268750899453750179910 ~2004
2268788111453757622310 ~2004
2268963659453792731910 ~2004
2268972911453794582310 ~2004
2268999143453799828710 ~2004
2269058171453811634310 ~2004
2269127039453825407910 ~2004
2269141571453828314310 ~2004
2269182563453836512710 ~2004
2269286891453857378310 ~2004
2269320491453864098310 ~2004
Home
4.724.182 digits
e-mail
25-04-13