Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2204048039440809607910 ~2004
22040531211322431872711 ~2005
2204149151440829830310 ~2004
22041770112204177011111 ~2006
2204265023440853004710 ~2004
2204276411440855282310 ~2004
2204433251440886650310 ~2004
2204473703440894740710 ~2004
2204500139440900027910 ~2004
22045044296613513287111 ~2007
2204634671440926934310 ~2004
2204717843440943568710 ~2004
2204735579440947115910 ~2004
2204764931440952986310 ~2004
22048063435291535223311 ~2007
2204818943440963788710 ~2004
2204884091440976818310 ~2004
2204885411440977082310 ~2004
2204910923440982184710 ~2004
2204917679440983535910 ~2004
2204944823440988964710 ~2004
2204986799440997359910 ~2004
2205001079441000215910 ~2004
2205002279441000455910 ~2004
2205019079441003815910 ~2004
Exponent Prime Factor Digits Year
2205095303441019060710 ~2004
22051157271764092581711 ~2005
2205296231441059246310 ~2004
22054944411323296664711 ~2005
2205601259441120251910 ~2004
2205661499441132299910 ~2004
2205712559441142511910 ~2004
2205746111441149222310 ~2004
2205755171441151034310 ~2004
2205780611441156122310 ~2004
22058151891764652151311 ~2005
220593028319853372547112 ~2008
2205984551441196910310 ~2004
22060222371323613342311 ~2005
2206025963441205192710 ~2004
2206143503441228700710 ~2004
22063625531323817531911 ~2005
2206442999441288599910 ~2004
2206523723441304744710 ~2004
22065835731323950143911 ~2005
2206585679441317135910 ~2004
22067079591765366367311 ~2005
22067496411324049784711 ~2005
2206837103441367420710 ~2004
2206936799441387359910 ~2004
Exponent Prime Factor Digits Year
2207081603441416320710 ~2004
2207140343441428068710 ~2004
2207165651441433130310 ~2004
22071706331324302379911 ~2005
2207231891441446378310 ~2004
22072417311765793384911 ~2005
2207293499441458699910 ~2004
22073130373531700859311 ~2006
2207492411441498482310 ~2004
2207499023441499804710 ~2004
22075488533090568394311 ~2006
22075501793973590322311 ~2006
22076197971766095837711 ~2005
2207639723441527944710 ~2004
2207678699441535739910 ~2004
22077106133090794858311 ~2006
22078382211766270576911 ~2005
22079489713532718353711 ~2006
22079879331324792759911 ~2005
2207991911441598382310 ~2004
22079940531324796431911 ~2005
2208048959441609791910 ~2004
22080906312208090631111 ~2006
22081576872208157687111 ~2006
2208346691441669338310 ~2004
Exponent Prime Factor Digits Year
2208378299441675659910 ~2004
2208472943441694588710 ~2004
2208617531441723506310 ~2004
2208629063441725812710 ~2004
2208658019441731603910 ~2004
22086836411325210184711 ~2005
2208774791441754958310 ~2004
2208797711441759542310 ~2004
2208858563441771712710 ~2004
2208892463441778492710 ~2004
2208932471441786494310 ~2004
2208959099441791819910 ~2004
2209006643441801328710 ~2004
2209125179441825035910 ~2004
2209311743441862348710 ~2004
2209353959441870791910 ~2004
2209357499441871499910 ~2004
2209404563441880912710 ~2004
22094309691767544775311 ~2005
2209507763441901552710 ~2004
2209544339441908867910 ~2004
2209546523441909304710 ~2004
2209592831441918566310 ~2004
22095962871767677029711 ~2005
2209654151441930830310 ~2004
Home
4.724.182 digits
e-mail
25-04-13