Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1546738813928043287910 ~2004
1546743959309348791910 ~2003
1546751399309350279910 ~2003
1546761659309352331910 ~2003
1546861091309372218310 ~2003
1546888919309377783910 ~2003
15468930431546893043111 ~2004
1546906643309381328710 ~2003
1546973843309394768710 ~2003
15469855933712765423311 ~2005
1547083981928250388710 ~2004
1547122751309424550310 ~2003
1547152679309430535910 ~2003
1547245151309449030310 ~2003
1547289839309457967910 ~2003
1547405663309481132710 ~2003
15474568035261353130311 ~2006
1547471951309494390310 ~2003
1547492339309498467910 ~2003
1547500319309500063910 ~2003
1547550923309510184710 ~2003
1547611679309522335910 ~2003
1547739997928643998310 ~2004
1547749811309549962310 ~2003
1547795783309559156710 ~2003
Exponent Prime Factor Digits Year
1547837939309567587910 ~2003
1547881619309576323910 ~2003
15480599211238447936911 ~2004
1548091403309618280710 ~2003
1548169391309633878310 ~2003
1548182159309636431910 ~2003
1548235379309647075910 ~2003
1548239879309647975910 ~2003
1548248357928949014310 ~2004
1548353771309670754310 ~2003
1548513539309702707910 ~2003
15485250376194100148111 ~2006
1548558503309711700710 ~2003
1548563363309712672710 ~2003
1548571019309714203910 ~2003
154863747110221007308712 ~2006
1548651683309730336710 ~2003
1548753131309750626310 ~2003
15488357592787904366311 ~2005
1548837743309767548710 ~2003
15488377611239070208911 ~2004
1548856871309771374310 ~2003
1548887831309777566310 ~2003
1548996899309799379910 ~2003
15490150011239212000911 ~2004
Exponent Prime Factor Digits Year
15490156212478424993711 ~2005
1549072331309814466310 ~2003
1549170251309834050310 ~2003
1549173539309834707910 ~2003
1549193939309838787910 ~2003
1549200371309840074310 ~2003
1549212911309842582310 ~2003
15494089573718581496911 ~2005
1549542803309908560710 ~2003
1549572653929743591910 ~2004
1549580699309916139910 ~2003
15495899271239671941711 ~2004
1549622663309924532710 ~2003
1549636163309927232710 ~2003
1549640531309928106310 ~2003
1549658003309931600710 ~2003
1549772123309954424710 ~2003
1549798571309959714310 ~2003
1549852043309970408710 ~2003
1549933439309986687910 ~2003
1549972199309994439910 ~2003
15499734592789952226311 ~2005
1550009063310001812710 ~2003
15500188011240015040911 ~2004
1550180903310036180710 ~2003
Exponent Prime Factor Digits Year
1550185739310037147910 ~2003
1550220257930132154310 ~2004
1550301017930180610310 ~2004
1550660339310132067910 ~2003
1550665331310133066310 ~2003
1550673203310134640710 ~2003
1550698811310139762310 ~2003
1550721719310144343910 ~2003
1550726783310145356710 ~2003
1550743739310148747910 ~2003
15508263837754131915111 ~2006
1550836223310167244710 ~2003
1550892659310178531910 ~2003
1550895011310179002310 ~2003
1550903423310180684710 ~2003
1550919059310183811910 ~2003
1550949863310189972710 ~2003
15509617911240769432911 ~2004
155104616924506529470312 ~2007
1551054119310210823910 ~2003
1551067439310213487910 ~2003
1551080339310216067910 ~2003
1551268871310253774310 ~2003
1551324563310264912710 ~2003
1551339599310267919910 ~2003
Home
4.903.097 digits
e-mail
25-07-08