Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
14499991971159999357711 ~2004
1450001999290000399910 ~2003
1450011599290002319910 ~2003
1450033223290006644710 ~2003
1450042031290008406310 ~2003
1450168619290033723910 ~2003
1450268411290053682310 ~2003
1450282919290056583910 ~2003
14503004511160240360911 ~2004
14503200711160256056911 ~2004
1450328533870197119910 ~2004
14504110873480986608911 ~2005
1450419023290083804710 ~2003
1450429559290085911910 ~2003
1450504463290100892710 ~2003
1450546841870328104710 ~2004
1450601111290120222310 ~2003
14507370471160589637711 ~2004
1450739723290147944710 ~2003
1450765391290153078310 ~2003
1450789751290157950310 ~2003
1450830011290166002310 ~2003
1450850939290170187910 ~2003
1450913423290182684710 ~2003
1450942931290188586310 ~2003
Exponent Prime Factor Digits Year
1450943951290188790310 ~2003
145101379711317907616712 ~2006
1451124803290224960710 ~2003
1451130371290226074310 ~2003
1451159597870695758310 ~2004
1451163839290232767910 ~2003
1451179883290235976710 ~2003
1451188559290237711910 ~2003
1451285663290257132710 ~2003
1451294639290258927910 ~2003
1451316371290263274310 ~2003
1451334119290266823910 ~2003
14513496171161079693711 ~2004
14513774571161101965711 ~2004
14514089571161127165711 ~2004
14514817912612667223911 ~2005
14515002471161200197711 ~2004
1451508083290301616710 ~2003
1451518559290303711910 ~2003
1451656331290331266310 ~2003
1451673697871004218310 ~2004
1451693003290338600710 ~2003
1451700311290340062310 ~2003
1451726099290345219910 ~2003
1451772779290354555910 ~2003
Exponent Prime Factor Digits Year
1451803763290360752710 ~2003
1451831723290366344710 ~2003
1451958323290391664710 ~2003
1451960483290392096710 ~2003
1451967311290393462310 ~2003
1451977679290395535910 ~2003
1451990201871194120710 ~2004
1452009983290401996710 ~2003
1452016199290403239910 ~2003
1452030233871218139910 ~2004
1452050399290410079910 ~2003
1452056279290411255910 ~2003
1452083159290416631910 ~2003
14521304571161704365711 ~2004
14521475811161718064911 ~2004
1452155423290431084710 ~2003
14521630671161730453711 ~2004
14521820093485236821711 ~2005
1452209579290441915910 ~2003
1452227723290445544710 ~2003
14522774711452277471111 ~2004
1452338099290467619910 ~2003
14523474191452347419111 ~2004
1452428843290485768710 ~2003
1452480563290496112710 ~2003
Exponent Prime Factor Digits Year
1452516311290503262310 ~2003
14525557031452555703111 ~2004
145259844725856252356712 ~2007
1452667283290533456710 ~2003
1452673763290534752710 ~2003
1452697019290539403910 ~2003
1452744179290548835910 ~2003
1452786383290557276710 ~2003
1452889631290577926310 ~2003
1452926837871756102310 ~2004
1452927551290585510310 ~2003
1452941603290588320710 ~2003
1452983579290596715910 ~2003
14529876191452987619111 ~2004
1453014851290602970310 ~2003
1453031903290606380710 ~2003
1453032803290606560710 ~2003
1453045151290609030310 ~2003
1453056461871833876710 ~2004
1453092983290618596710 ~2003
1453128959290625791910 ~2003
14531641796975188059311 ~2006
1453189823290637964710 ~2003
14531965996103425715911 ~2006
1453220963290644192710 ~2003
Home
4.903.097 digits
e-mail
25-07-08